IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO.6, JUNE 2013

1139

Improving Data Center Network Utilization
Using Near-Optimal Traffic Engineering

Fung Po Tso, Member, IEEE, and Dimitrios P. Pezaros, Member, IEEE

Abstract—Equal cost multiple path (ECMP) forwarding is the most prevalent multipath routing used in data center (DC) networks
today. However, it fails to exploit increased path diversity that can be provided by traffic engineering techniques through the
assignment of nonuniform link weights to optimize network resource usage. To this extent, constructing a routing algorithm that
provides path diversity over nonuniform link weights (i.e., unequal cost links), simplicity in path discovery and optimality in minimizing
maximum link utilization (MLU) is nontrivial. In this paper, we have implemented and evaluated the Penalizing Exponential Flow-
spliTing (PEFT) algorithm in a cloud DC environment based on two dominant topologies, canonical and fat tree. In addition, we have
proposed a new cloud DC topology which, with only a marginal modification of the current canonical tree DC architecture, can further
reduce MLU and increase overall network capacity utilization through PEFT routing.

Index Terms—Data center routing, data center topology, multipath routing, traffic engineering, load balancing, cloud computing

1 INTRODUCTION

RECENT years have witnessed a significant growth of
cloud computing services that substantially reduce
capital and operating costs by sharing resources such as
CPU time and storage among a large number of tenants.
The underlying infrastructure is provided by data center
(DC) networks embracing dedicated hierarchical tree
topologies, as shown in Fig. 1a, with expensive switches
in the higher layers, and lower end edge switches that
connect to thousands of servers [10].

Recent research advocates “scale-out” topologies, as
shown in Fig. 1b, that can horizontally expand DC
architectures to provide for increasing aggregate bandwidth
among all communicating hosts by interconnecting a large
number of inexpensive commodity switches [5], [16].
However, research has also demonstrated that supporting
protocols for these new architectures fail to leverage
topological advantages [11], [26]. Most notably, recent
measurement work [22], [8], [14] reveals that current DC
networks are largely underutilized and therefore there is
significant room for operators to optimize their network
infrastructures before considering expanding their network
or upgrading to new fabrics.

Most of current DC networks employ equal cost multipath
(ECMP) forwarding [19] to leverage the path diversity
provided by topological redundancy, by splitting traffic
across multiple paths through hashing packets’ headers.
However, per-flow ECMP is link load and flow agnostic in
which resulting hash collision can hinder load-balancing

o The authors are with the School of Computing Science, University of
Glasgow, Lilybank Gardens, Glasgow, United Kingdom, G12 8RZ.
E-mail: {posco.tso, dimitros.pezarosj@glasgow.ac.uk.

Manuscript received 1 Mar. 2012; revised 5 Dec. 2012; accepted 9 Dec. 2012;
published online 21 Dec. 2012.

Recommended for acceptance by V.B. Misic, R. Buyya, D. Milojicic, and
Y. Cui.

For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number
TPDSSI-2012-03-0226.

Digital Object Identifier no. 10.1109/TPDS.2012.343.

1045-9219/13/$31.00 © 2013 IEEE

among links [6]. Recent research on DC network measure-
ment has confirmed that congestion happens even when
average link utilization is low [8], [21]. Therefore, although
DC networks are often overprovisioned, a small but
significant fraction of link congestion can largely deteriorate
the overall network performance, demanding DC operators
to expand or upgrade their networks. In light of this, we
argue that the overall performance of network infrastructure,
i.e., the period of time the network can operate efficiently
without congestion and without adding extra networking
components, can be significantly improved through the
mitigation of congestion and better load balancing on
otherwise bottlenecked links.

In this paper, we seek to answer the following question:
Are traffic engineering (TE) techniques based on a simple link-
state routing protocol able to fully exploit path diversity in DC
networks? The Penalizing Exponential Flow-spliTing (PEFT)
routing algorithm is just such a protocol [34]. It is a TE
technique with hop-by-hop forwarding, i.e., routers run-
ning PEFT make forwarding and traffic splitting decisions
locally and independently of each other. Moreover, packets
can be forwarded through a set of unequal cost paths but
the longer paths are penalized based on total link weights
along the paths. PEFT consists of two detached compo-
nents, namely link-state routing, including traffic splitting,
and link weight optimization.

Despite PEFT having been proven to achieve optimal TE
for wide-area ISP networks in [34], its applicability for DC
networks remains largely unanswered because both traffic
patterns and network topologies are enormously different
in many ways due to the nature of cloud DC applications
[14]. In this paper, we have implemented and evaluated a
reactive online version of PEFT for a DC network environ-
ments. Our contributions are threefold:

e We have provided a practical implementation of
PEFT (in C++) for DC networks.

e Wehaveevaluated PEFT for canonical and fat-tree DC
network topologies. The results indicate that PEFT

Published by the IEEE Computer Society

1140

Fig. 1. (a) Canonical tree and (b) Fat-tree DC network topology.

falls only 3-5 percent short of optimal TE in DCs. At the
same time, PEFT provides performance gain of at least
20 percent over ECMP in such topologies.

e We propose to interlink edge switches to increase
redundant paths and take advantage of PEFT’s
ability to route packets over unequal-cost paths.
Results show that PEFT in this topology provides
for substantial increase DC network link utiliza-
tion, which in turn improves DC capacity by about
10 percent.

The rest of this paper is organized as follows: We present
our modified PEFT for DC networks in Section 2. We
extensively evaluate the performance of PEFT in both
canonical and fat-tree topologies in Section 3. A new
interlink DC topology is proposed and evaluated it in
Section 4. Runtime efficiency on hardware platform is given
in Section 5. Section 6 discusses related work and Section 7
concludes this paper.

2 TE For DC NETWORKS

TE is an indispensable tool used on the Internet to select
routes that make efficient use of network resources. While
many TE techniques have been proposed for the Internet,
TE for DCs is still at a primitive state. Most DC operators
simply move Internet TE onto a DC environment.
Operators often adopt ECMP to spread traffic flows
across multiple redundant paths using flow hashing.
However, recent research has showed that ECMP fails to
efficiently leverage path redundancy in DC networks.
Studies have demonstrated that network redundancy
cannot completely mask all failures, implicitly pointing
to the inefficiency of ECMP [14]. Similarly, it is shown that
ECMP’s static mapping (hashing) of flows to paths does
not account for either current network utilization or flow
size, with resulting collisions overwhelming switch buffers
and degrading overall switch utilization [6]. Moreover,
Benson et al. [9] have tested ECMP with real DC traffic
traces and found that the performance of ECMP is
suboptimal. The consequence of such inefficiency is that,
while most of the links in measured DC networks have
relatively low utilization, a small but significant fraction of
links appear to be persistently congested [8], [21]. As a
result, operators will need to upgrade their networks even
if they are generally underutilized.

Hedera [6], a centralized TE technique, schedules
“elephant” flows exceeding 10 percent of the host-NIC
bandwidth while the switches route “mice” flows using
ECMP. However, there are two main limitations associated

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO.6, JUNE 2013

Core

Aggregation

Top of Rack (TOR)

with Hedera. First, its traffic scheduler runs at every
5 seconds but [11], [25] shows that Hedera can only
improve utilization by 1-5percent over ECMP and the
scheduler needs to run at least up to every 500 ms for
having a better improvement. At the same time, Hedera
only schedules flows that exceed 10 percent of the NIC
bandwidth. This is problematic too because whenever there
are large host-limited flows (e.g., flows limited by host disk
access) constantly transmitting at rates below 10 percent of
the NIC bandwidth for a long time period, these flows will
never be scheduled. In comparison, VL2 [16] uses Valiant
Load Balancing to randomize packet forwarding on a per-
flow basis, which is essentially an ECMP mechanism over a
virtual layer-2 infrastructure. Other DC routing techniques
[17], [22], [26] advocate using servers to determine routing
path or rely packets. Such “server-centric” routing requires
modification to end hosts.

Based on the above observations, we argue that the
performance of current DC networks can be significantly
improved if traffic flows can be adequately managed to
avoid congestion on bottleneck links. This can be achieved
by employing more elegant TE to offload traffic from
congested links onto spare ones and alleviate the need for
topological upgrades. Among a large number of available
TE techniques, such as [12], [13], [20], [29], [30], [34], we
have modified the PEFT routing algorithm to provide close
to optimal TE for a variety of DC topologies [34]. PEFT is a
simple and link-state protocol that can achieve optimal TE by
using not only shortest paths, but also splitting traffic over
longer paths with exponential penalisation.

2.1 Overview of PEFT

PEFT was introduced by Xu et al. [34] for ISP network
operations, we hence summarize its key properties in this
section.

Consider a network as a directed graph G = (W,IE),
where V is the set of nodes (where N = |W|), E is the set of
links (where E = [IE|), and link (u,v) has capacity ¢,,. The
offered traffic is represented by a traffic matrix (TM) D(s, t)
for source-destination pairs indexed by (s,t). TE usually
considers a link-cost function ®({f,,,c.,}) that is an
increasing function of f,,. When we consider the link
utilization function f,,/c,., then the PEFT’s TE objective is
to minimize mazr(,)ep®(fuv,Cuw). Optimal TE requires
solving the following flow conservation and link capacity
constraints given by [34], whose corresponding notation is
given in Table 1

min ®({ fuvs Cun}) (1a)

TSO AND PEZAROS:

TABLE 1
Key Notations
[Notation | Meaning ‘
D(s,t) Traffic demand from source s to desti-
nation t
Cu v Capacity of link (u,v)
Sfuw Flow on link (u,v)
I, Flow on link (u,v) destined to node ¢
st > flo—= Y. fl.=D(s,t)Vs £t (1b)
vi(s,v)€lB u:(u,s)€lE
A
fu.,v - Z f;L S Cu.yuv(ua ’U) (1C)
teW
vars. fﬁﬂﬂfu,v > 0. (1d)

To offload traffic from congested paths to less congested
but slightly longer ones, PEFT allows exponential traffic
splitting over unequal-cost paths, as shown in (2), where p,
is the set of paths from u to ¢t and z/, is the fraction of
forwarding a packet to the ith path, i.e., p,

P 6_[]”‘-’
T, =—F" 2
u,t Z]. 67[7{“ ()

Similar to Open Shortest Path First (OSPF) protocol,
PEFT-enabled switches make packet forwarding decisions
independently based on link weight on a hop-by-hop basis.
However, PEFT splits traffic along all possible paths, but
penalizes longer paths exponentially. The protocol has two
key components: It uses a link-weight optimization algorithm
to compute optimal link weights for a given TM and then
link-state routing computes and splits traffic flows according
to the resulting link weights.

2.2 Modified PEFT

We have modified PEFT’s link weight optimization as
illustrated in Fig. 2. PEFT has originally been an offline TE
designed for ISP networks where the TM is rather static and
predictable. As shown in Fig. 2a, link weight optimization
and link-state routing in PEFT are two separate and detached
modules. In practice, the operator will run the link weight
optimization module in a stand-alone machine while the
link-state routing module will be embedded in PEFT-
enabled switches. The operators will then need to measure
the TM from their network over long timescales. Alongside
forecasting techniques, the derived TM is used together with
link capacities as inputs to the link-weight optimization
module for computing the “best-fit” link weights for the best
possible traffic distribution. Operators then install the
resulting link weights to the PEFT-enabled switches that in
turn invoke PEFT’s link-state routing protocol at runtime to
compute and accomplish the desirable traffic distribution in
the network.

In contrast to aggregate traffic volumes in backbone ISP
networks, previous measurement studies have revealed
that traffic in a DC is highly bursty and is generally
unpredictable as traffic patterns in DC networks change
nearly constantly [16], [21]. The lack of short term TM

IMPROVING DATA CENTER NETWORK UTILIZATION USING NEAR-OPTIMAL TRAFFIC ENGINEERING

1141

measure
Llnk Traﬂlc
% % Link State Routing
Desirable Traffic
Distribution

Link Weight Optimisation
(Compute link weights)

(a)
Traffic Matrix &
Link Ullllsatlcn

measure

Link State Houllng

Desirable
Traffic
Distribution

Link
Capacity

(b)
Fig. 2. (a) Original offline PEFT TE. (b) Modified online PEFT TE.

Link Weight
Optimisation
(Compute link weights)

predictability is due to the use of random resource
allocation to improve the (system-level) performance of
DC applications since the distributed file system spreads
data chunks randomly across servers for load distribution
and redundancy.

In our implementation, we have integrated the link-
weight optimization algorithm into the main routing
control plane, meaning it is also included in PEFT-enabled
switches running in parallel with PEFT’s link-state protocol.
We strive to make PEFT react more adaptively to the
change of TM (online TE). We, therefore, incorporated a
new network measurement module in PEFT, which queries
the number of bytes transferred from all immediately
associated servers and monitors link utilization of indivi-
dual links. The former statistic will become the ToR-to-ToR
(Top of Rack) TM, i.e., the number of bytes sent from
servers under one ToR to servers under other ToR switches.
The TM measurement is an proactive approach and, hence,
the measured ToR TM will be exchanged over the network
periodically. Upon completion, the TM will then be passed
into PEFT’s link-weight optimization to compute the
optimal set of link weights. The link weights will be
immediately used by the link-state protocol to derive the
optimal traffic splitting ratio. Hence, instead of explicitly
exchanging link weights, the modified PEFT propagates the
TM over the network and subsequently each switch is able
to independently compute link weights locally. It is
reported that on a DC network, only a small fraction of
traffic flows are destined outside the rack. So the ToR TM is
in fact a sparse matrix which only contains 3-4 entries, each
of 6 bytes in length. To this extent, the ToR TM can be
efficiently exchanged through the network with only a little
extra overhead. On the other hand, the link utilization is a
reactive mechanism that detects abnormalities in link
utilization. Upon detection, link weight computation and
TM exchange are triggered immediately.

Locally measured TMs are exchanged over the network
through a link-state advertisement (LSA). On this front we
have also implemented a lightweight Hello protocol (based
on OSPF’s LSA) to facilitate LSA among switches running
PEFT. LSAs are broadcasted at regular intervals, e.g., every
30 seconds, as well as whenever there is a change in link
state. For example, at the network formation stage, LSAs
carried by Hello messages are broadcasted to directly
connected neighbours with TTL = 1. Upon receiving the
LSAs, a switch will update the TM and it will further

1142

broadcast the LSA to notify the next-hop neighbours of the
changes. If a LSA does not trigger any changes, it will be
ignored and the local timer will be updated accordingly.

The amount of traffic to forward to the next hop over a
given interface is determined by the traffic distribution ratio
in PEFT. This is computed by the algorithm so that shorter
paths will get allocated more traffic and longer paths will be
penalized exponentially. In our implementation, PEFT’s
link-state routing computes and stores the traffic distribu-
tion ratio as a part of the routing table entry. So whenever a
routing table is queried, the entry returned will contain an
extra tuple for the traffic distribution ratio.

2.3 Implementation of Link-Weight Optimizer

Implementing PEFT requires solving a convex optimization
problem, i.e., (1), for optimal traffic flow distribution. It is
then followed by executing the link-weight optimization
procedure to produce the link weights that would achieve
this optimal traffic distribution. In this section, we present
the implementation of these two processes.

2.3.1 Solving the Convex Optimization Problem
Solving (1) can be done through modeling it with a
modeling language for mathematical programming
(AMPL) [3] and by subsequently employing an appro-
priate solver, such as the CPLEX [1] and the Ipopt solver
[2]. AMPL is highly readable with nearly one-to-one
correspondence to the mathematical equation. Using
AMPL to solve the equation is easier and more straightfor-
ward, but this is only suitable when PEFT is to be used in
an offline manner because the resulting optimal distribu-
tion will need to be manually input into PEFI’s link
weight optimization module.

In our implementation, the modified PEFT needs to solve
the optimization problem online in switches, in pace with
the link-weight optimization module. As a result, we
included the IPOPT’s C++ library in our implementation
to programmatically pass the optimal set of flow distribu-
tion to the link weight optimization module. Compared to
AMPL, modeling the problem in C++ is more complicated.

On the problem setup, IPOPT asks for the Gradient of
the objective function, the number of nonzero entries in the
Jacobian of the constraints [32], and the number of nonzero
entries in the Hessian [31]. Equation (1) has two classes of
variables, f,;v and f,,. To reduce the number of variables
to simplify the modeling and save memory space in
runtime, (1) can be safely written as follows because f,, e

ZtEW flfl.vv(u7 U)

. ZteW f'zti,u
AN MAT (u)ep— (3a)
st Y fl,— > fi,=D(s,t)Vs#t (3b)
vi(s,w)€lE ' u:(u,s)€IE
> Fun < cun¥(u,0) (3¢)
teW
vars. [, > 0. (3d)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO.6, JUNE 2013

In (3), we only need to solve for the variable f/ .
Assuming all edges are organized in a way that an individual
edge can be indexed through an iterator 4, the variable, f/ , is

stored in an array, and can be indexed by jth destination, t and
ith edge index, (u, v).

2.3.2 Link-Weight Computation

The procedural pseudocode for link-weight computation
has been given in [34], one could just follow the procedures
to implement it without much difficulty.

However, throughout our implementation and evalua-
tion we have observed from our empirical settings that if we
set initial values for link weights to the inverse of the link
capacity, fewer link-weight computation iterations are
needed. Since the majority of traffic is still being split over
the shortest physical paths, setting the initial value to the
inverse of link capacity can reduce the number of iterations
and the resulting set of link weights would only vary
slightly from the initial values.

To conclude, in spite of sharing the same theoretical
foundation, the modified PEFT is fundamentally different
from the original design in the operational context. Original
PEFT computes routing plans from a mix of measured and
forecast TMs offline, whereas our modified PEFT computes
routing plans online as it them to adapt to changing
network conditions through probing. As part of our
contribution in this paper, we have made our implementa-
tion available to the research community at [27].

3 PERFORMANCE EVALUATION

While PEFT was proven to closely approximate TE optim-
ality [34], its performance in a DC environment still
unknown due to the highly unstable traffic demands that
result in a continuously evolving TM. In this section, we
evaluate the performance of PEFT with respect to improved
load-balancing derived from path diversity, reduced max-
imum link utilization, and the overall network capacity gain.

3.1 Simulation Setup

We have evaluated PEFT for canonical tree (32 ToRs, 32
servers per rack), fat tree (k=28) as well as for the
interlinked tree (32 ToRs, 32 servers per rack) (discussed
in Section 4) in Network Simulator 3 [4].

Based on this setup, each of the simulated DC environ-
ment contains 1,024 hosts. We believe this scale is large
enough to reflect routing protocol properties used in the
various DC fabrics. We assume 16-port commodity switches
are used in fat-tree topology and all ports are used up for
dense interconnect. All links connecting switches and
servers in this architecture are 1 Gb/s [5]. As for the
canonical and the interlink tree, we assume 48-port switches
are in use. The host-to-switch links are 1 Gb/s and links
between switches are 10 Gb/s [10]. Nonetheless, ToR
interconnect links in the interlink topology are still 1 Gb/s
because those ports were originally used to connect
to servers.

3.1.1 Traffic Generator

While it is challenging to simulate the overall DC traffic
characteristics, we have approximated the ToR TM and

TSO AND PEZAROS: IMPROVING DATA CENTER NETWORK UTILIZATION USING NEAR-OPTIMAL TRAFFIC ENGINEERING

generated traffic patterns according to recent measurement
results, with respect to flow size distribution, number of
concurrent flows as well as the distribution of in-rack and
cross-rack recipients. Discussed as follows, we believe these
distributions are sufficient to accurately capture the typical
DC traffic properties.

We first review the traffic characteristics in the DC
environment. Canonical DC traffic is carefully engineered so
that servers communicate mostly within a cluster (e.g., the
same rack), whereas in the cloud DCs, more cross-rack
communication takes place due to the nature of distributed
applications in the DC, such as MapReduce [8], [21]. Cloud
DCs use randomness to improve application performance
because the distributed file system spreads data chunks
randomly across servers for load distribution and redun-
dancy. In a cloud DC, more than 50 percent of the time, an
average machine has about 10 concurrent flows, but at least
5 percent of the time it has more than 80 concurrent flows. It
is also reported that more than 100 concurrent flow are
rarely seen. Compared to the Internet, the distribution of
traffic flows in a DC is simpler and more uniform. The
reason is that in DCs, internal flows arise in an engineered
environment driven by careful design decisions, for
instance, the 100-MB data chunk size is driven by the need
to amortize disk-seek times over read times [16]. Most of the
flows are small (mice) and consist of HELLO messages and
queries. Almost all the bytes in the DC are transported in
flows whose lengths vary from about 100 MB to about 1 GB
(elephants) [21].

Our traffic generator models the aforementioned traffic
characteristics. It destines about 20 percent of traffic to
servers outside the rack. It generates 10 concurrent flows
60 percent of the time, 80-100 concurrent flows 5 percent of
the time, while the rest of the time zero to nine concurrent
flows are generated. Ninety nine percent of the generated
flows are smaller than 100 MB and the rest are between 100
MB and 1 GB. We have employed connectionless flows such
that packets can be routed independently. Reliable and in-
order packet transmission can be readily achieved through
multipath congestion-aware protocols, such as multipath
TCP (MPTCP) [25] and Packetscatter [24]. MPTCP is
currently an IETF-draft [33] and Packetscatter is already in
use in today’s switch. We believe these protocols will
become commodity in DC infrastructures because they
enable more efficient resource usage by neither overloading
nor underloading the topology, but rather using adequate
congestion control over each path. Similar to our approach,
Packetscatter randomly picks the output port on which to
send packets when multiple shortest paths are available but
with a more robust fast-retransmit algorithm. Whereas in
MPTCP, packets on each path in PEFT can be treated as one
of MPTCP’s subflows and MPTCP will seamlessly maintain
in-order packet transmission for applications.

3.1.2 Optimization Schedule

In our simulation, we set the simulator to run for 1,000
simulated seconds, and the modified PEFT is set to optimize
the link weight every 50 s. In other words, the optimization
process happens 20 times throughout the simulation. The
initial set of link weights are from the last optimization in
the previous run. We set a sparse optimization schedule

1143
TABLE 2
Average Path Stretch of PEFT
Cross Cross
Aggre- Core
gation
Canonical Tree 1 1.15
Fat Tree 1 1
Interlink Tree 1.25 1.28
Interlink Tree (NOP) 1.04 1.2

because frequent TM updates exchange and optimizations
are resource intensive. As it will become evident later in this
section, the sparse optimization schedule only slightly
sacrifices the optimality by about 3 percent, yet it provides
for a significant performance gain. Moreover, our assump-
tion is also supported by Benson et al. [8], which reveals
that diurnal patterns (i.e., long term periodicity) and
pronounced weekend/weekday variations exist in their
measured DCs. In light of this, modified PEFT can be set to
optimize the network on a hourly basis to approximate the
change of TM.

Apparently, the optimality refers to having flows
managed on link (u,v) such that the link capacity c,, is
fully utilized, preferably f,, = c,,. As a benchmark, we
have solved (3) for optimal f,, values and then compared
them with measured ones.

3.2 Load Balancing

In this section, we focus on the performance of PEFT with
respect to network-wide load balancing over ECMP.

We list the average path stretch of PEFT for canonical
tree, fat tree as well as for the interlink tree (discussed in
Section 4) topologies in Table 2. We define the path stretch
as the ratio of the length of actual path taken to the length of
the shortest path.

The path stretch is relatively low because simulated
traffic staying within the same rack follows the shortest
path. Higher path stretch can be seen when traffic needs to
flow across the core switches to servers residing in other
subtrees. In spite of low stretch, PEFT can still effectively
amortize link utilization by optimizing the distribution of
flows in the DC network. As for the fat-tree case, PEFT has a
path stretch factor of one, meaning that all packets are
forwarded over the shortest paths because the topology
provides enough redundant network capacity to carry the
offered traffic without overloading any one of the shortest
paths. Therefore, no detour is needed to achieve optimal
traffic distribution. We will show in Section 4 that by
physically increasing the unequal-cost redundant paths in
the DC network, PEFT can greatly improve performance.

Performance of the DC network highly depends on the
degree of path diversity. In the canonical tree structure, one
can only find at most four equal-cost paths between any
given pair of servers. In comparison, the number of
redundant paths in the recently proposed fat-tree topology
grows with the topology size, for example, 48-port
commodity switches can yield a DC network with 576
(433/4/48) equal-cost paths. Hence, with PEFT an immedi-
ate question arises: Can PEFT exploit path diversity and better
load-balance traffic in the network? To answer this question,

1144

02f —
0.8

A

0.08

Link Utilisation
Link Utilisation

0.06)

0.04

= o <
o o A <

3
o
S e 3 G o
W vé‘ It @ O i

@
o ean® et

Fig. 3. Link utilization distribution for (a) lightly loaded network (MLU =
20 percent). (b) heavily loaded network (MLU = 70 percent).

we have looked into the average traffic distribution on links
when a link of the aggregation switches reached 20 percent
(lightly loaded) and 70 percent (heavily loaded, a com-
monly used threshold) utilization, respectively. It is worth
noting here that a similar distribution can be seen when link
utilization reaches 100 percent.

From Fig. 3 we can see that for both scenarios, ECMP
constantly exhibits a wider spread in link utilization over
PEFT, implying that traffic on the links across the network
is highly unbalanced, where in heavily loaded networks
the variance can be as high as 23 percent. On the contrary,
when PEFT is applied the distribution variance for both
cases is improved by approximately 5 to 10 percent. This is
explicit evidence that PEFT, a path-based traffic splitting
technique, schedules and splits traffic over longer paths to
leverage path diversity, and, thus, better balancing of the
distribution of traffic, preventing originally spare links
from being idle.

3.3 Minimization of Maximum Link Utilization (MLU)
Fig. 4 shows the distribution (CDF) of MLU for PEFT and
ECMP in both canonical and fat-tree topologies. PEFT and
ECMP for both topologies were compared against optimal
MLU. Fig. 4a compares the optimum versus actual ECMP
performance we obtained from the simulation. From this
figure, it is evident that for both topologies ECMP’s
distribution largely deviates from optimal. This implies
that ECMP does not reasonably spread traffic load over
redundant paths. Instead, it only evenly splits the traffic
among all outgoing paths and does not avoid already
congested links. In particular, in the fat-tree topology,
which has an incredibly large number of equal-cost paths,
we can see that some links still become highly utilized in
ECMP, implying there is a large room for improvement.
Fig. 4b shows PEFT MLU performance against optimal
for both topologies. It is clearly shown that the protocol
deviates only by a small percentage, about 3 percent, from

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO.6, JUNE 2013

I Opiral TE I Opial TE

[JpeFT [perT

[R0 [IPEFT-NOP
1 1 [el

Efficiency of Capacity Utilization
Efficiency of Capacity Utilization

Canonical Tree FatTree Canonical Tree Interlink Tree

Topology Topology
(a) (b)

Fig. 5. Comparison of capacity utilization for (a) canonical tree and fat-
tree (b) canonical tree and interlink tree.

optimal. The reason for such significant improvement is
that PEFT optimizes distribution of flows such that they are
unevenly split over all outgoing paths. For example, if a
server wants to transmit to another server in a neighbouring
rack, it physically has two equal-length shortest paths of
three hops. But with PEFT the two paths may become
unequal (reflected in the sum of link weights along the
path) after optimization. Then, the traffic is exponentially
split over the outgoing interfaces. However, we can still
find the deviation between PEFT and optimal distribution
because, similar to other TE techniques, PEFT needs to
measure TM regularly and then update link weight and
compute new traffic splitting ratios accordingly. Reactive
and sparse TM updates prevent PEFT from reacting to
changes in a timely manner.

Fig. 4c demonstrates a significant improvement of PEFT
over ECMP on the order of 10-20 percent. With PEFT, the
number of congested links is significantly reduced because
it is very rare (only 2 percent of the time) that MLU will
reach 100 percent in the canonical tree case. At the same
time, there is a narrower difference for the fat-tree
topology, because ECMP greatly benefits from the large
number of redundant paths between any given pair of
servers. Cross-rack traffic, even if it is routed through the
core layer, can be amortized on each link.

3.4 Capacity Utilization

Next, Fig. 5 depicts the “efficiency of capacity utilization,”
which is defined as the percentage of traffic demand
satisfied by a TE scheme when MLU reaches 100 percent,
when compared to that of optimal TE. The improvement
over efficiency of capacity utilization is commonly referred
to as the “Internet capacity increase,” but without changing
the definition, we can safely call it “DC capacity increase”
[131], [34].

— R ———————— g e
- <t i
09 - Q(Q A b 09 qﬁeﬁ % o9 09 qﬁ/,,ed M%
08} 4(< P;/b 08 o P 08} 08 46/6 4
- A 5 M
07, D 0.7] égﬁ(‘/ 5 07, 0.7 +
06} M - 06 /QV) X 06} 06 qé M
% N ST
805 205 1 A/ 805 & 05l [
5]] jﬂ b o 8 4 */,‘/
04 (ﬂﬂ f 04 4 04 ﬁfa o 04 g{ if
£ 1
03] & Fat-tree Optimal 03 % i 4 Fat-tree Optimal 03 Fat-tree PEFT 03 P & Fat-tree Optimal
02 Fat-ree ECMP 02l) Fat-tree PEFT 02 Fat-ree ECMP 02l +* Interfink Tree Optimal
——Canonical Tree Optimel {(' —+—Canonical Tree Optimal| f e & Canonical Tree PEFT i Interlink Tree PEFT
o ~+-Canonical Tree ECMP o 3 —-Canonical Tree PEFT oy e ~—Canonical Tree ECMP. o + —+—Canonical Tree Optimal
P o] ods

0 01 Dz 03 04 0,
Maximum! Lmk Unhsaﬂnn (ML)

(@)

7 08 09 1 0 01 02 03 04 07 08 09

Maximum Lmk Unhsanun (ML)

(b)

1

0 01 02 03 04 0,
Maximum! Lmk Unhsannﬂ (ML)

(©

7 08 09 1 0 "ol 02 o 07 08 09 1

3 04 05 06
Maximum Link Utlisation (MLU)

(d)

Fig. 4. Comparison of MLU for (a) optimal versus ECMP, (b) optimal versus PEFT, (c) PEFT versus ECMP in fat-tree and canonical tree topologies;

and (d) optimal versus PEFT in interlink tree topology.

TSO AND PEZAROS: IMPROVING DATA CENTER NETWORK UTILIZATION USING NEAR-OPTIMAL TRAFFIC ENGINEERING

Our simulation results demonstrate that PEFT can
significantly increase the capacity utilization efficiency over
ECMP by 18 and 9 percent for canonical and fat-tree
topologies, respectively. In both cases, PEFT falls only 3 and
2 percent below optimal utilization, respectively.

3.5 Protocol Stability

Protocol stability is a major issue for load-adaptive routing
protocols such as online TE. Unstable protocol behavior
typically leads to oscillations in the control plane, where a
route flaps between two different links.

PEFT regularly performs optimizations, which will
eventually result in a change of link weights. Although
frequent link weights changes can cause route oscillation,
PEFT can prevent this in two ways. First, PEFT’s perfor-
mance optimization can be set to a relatively long timescale,
for example, every few minutes, allowing the routing
protocol to converge such that the routes will not constantly
alter over time. Second, through our study we found
shortest paths (in terms of hop count) are always selected
and most traffic flows are carried over the shortest paths.
This observation implies that whenever path failures occur
due to changes in link weights, it is safe to transmit packets
over shortest paths during the new link-weight computa-
tion phase to avoid potential transient loops.

4 INTERLINKED TOPOLOGY

In spite of topological differences, conventional and new
DC fabrics share one common property—using multipath
load balancing as the underpinning routing protocol. The
higher degree of path diversity, the better multipath routing
can perform. The difference in path diversity between
conventional and new topologies has lead us to tackle the
following challenge: How to provide additional path diversity
in current DC topologies without significant modification or
investment. One way to do this is to optimize the routing
protocol. We have already seen that PEFT can significantly
improve the performance over ECMP. Another way is to
physically further increase the number of interconnects in
the network. Fat tree adopts this latter approach, albeit it is
not cost-effective for a conventional DC topology to
upgrade to fat tree because it requires complete replace-
ment and highly complex rewiring of the network. The
alteration to the DC topology should, therefore, be marginal
and should not incur substantial additional cost. After
investigating PEFT in DC network further, we have found
that due to the symmetric tree structure, the longer paths, if
any, are at least two or multiples-of-2 hops further. Some of
these paths in PEFT will eventually be exponentially
penalized and will not be used.

We, thus, propose to interlink ToR switches (core
switches are already interlinked in the reference design in
[10]) as shown in Fig. 6. This way, we can physically increase
the path diversity. More importantly, these asymmetric links
create numerous paths only one-hop longer than the shortest
one, and therefore the probability of seeing multiple unequal
cost paths that will not be prohibitively penalized in PEFT
has been greatly improved. Thus, traffic flows in the highly
oversubscribed links in the upper hierarchy can be offloaded
to these interlinks to avoid congestion. There are two further

1145

Core

Aggregation

Top of Rack (TOR)

Fig. 6. Interlinked tree topology.

factors that make this proposal viable: The interlinking is
technically simple because it does not require tailor-made
configuration or wiring techniques (authors in [5] have
acknowledged that fat-tree topologies can impose significant
wiring complexity in large networks). From a fiscal view-
point, the interlinking incurs no extra hardware cost as it
only alters the interconnect between existing ToR switches.
Interlinking switches will sacrifice two ports to servers per
ToR switch (one for the two edge ToR switches), resulting in
m X 2 —2 less number of servers to be connected to the
topology, where m is the number of ToR switches. However,
we argue that the performance gain from the network will
outweigh loss of server computation in the long run because
both the infrastructure’s performance will be substantially
improved. As a result, the target DCs can provide a better
subscribers satisfaction, which will eventually lead to better
business revenue. In addition, given that server computation
resource utilization is mostly under 50 percent in today’s
DCs [18], the lost computation power can be effectively
compensated through virtualisation on other machines.

The newly added links in this interlinked topology,
however, impose some path asymmetry on the network.
This is essentially unsuitable for ECMP because its under-
pinning OSPF protocol will either concentrate traffic on the
“shortest” links connecting ToR switches, or it will exclude
these links from the equal-cost shortest path sets. As we can
see from Fig. 5b, ECMP over the interlinked topology has
slightly worse capacity utilization over the canonical tree.
On the contrary, this topology is particularly favorable to
the PEFT due to its ability to include unequal-cost paths
into routing decisions, combining the path diversity gain in
both physical (the topology) and logical (the routing
protocol) extents. It is also evidenced in Table 2 that PEFT
in the interlinked tree topology exhibits a high path stretch
irrespective of employment of link weight optimization.

We have extensively evaluated PEFT’s performance over
the interlinked topology through simulation and the results
are shown in Fig. 4d. It is obvious that the optimal
distribution of flows is 5-10 percent better than that of
canonical tree, while PEFT’s performance is very close to
optimal, seeing only 0-3 percent difference in general. Even
though without dynamic link optimization, PEFT is not
likely to approximate optimality, we can see in Fig. 7 PEFT
without optimization (denoted as PEFT-NOP) over the
interlinked topology offers comparable performance to
PEFT with optimization over the canonical tree, still
achieving good capacity utilization as shown Fig. 5b. This
finding emphasizes the efficacy of minor topological
reconfigurations in maintaining low MLU even with static
routing configurations.

1146
— A
s
A
08 X B2
Py
.
od fa
w ;
[a) o
0 A
X
04 Y
VS Interlink Tree Optimal
0 A/A Interlnk Tree PEFT
/ - Canonical Tree PEFT
A Interfink PEFT-NOP
K n n n

§1702 0 'o‘.4 p‘.s ‘0“6.07 08 09 1
Maximum Link Utilisation (MLU)

Fig. 7. (a) Comparison of PEFT in interlink tree. PEFT-NOP denotes
using PEFT without optimization.

We argue that further implications of this finding are
equally significant. First, it is very expensive for existing
cloud DC operators to upgrade their network by vertical or
horizontal expansion because the expansion either requires
purchasing expensive aggression switches or prohibitive
wiring complexity. The interlinked topology is a straight-
forward expansion for existing DC infrastructures. Second,
applying PEFT to the interlinked topology can have the best
composite effect on redundant path utilization. But even if
operators wish to resolve to a minimal complexity static
routing solution, they can simply apply PEFT without its
optimization components.

Nevertheless, the interlink technique is not applicable to
fat-tree topologies as in this topology all switch ports are
used for dense interconnect, leaving no room for further
interconnecting edge switches.

5 RuUNTIME REQUIREMENTS

In this section, we present the runtime efficiency of
the component our modified PEFT in a real hardware
environment.

5.1 PEFT Optimizer

We tested our PEFT optimizer in a machine running
Ubuntu 10.04 Linux with an Intel P4-3-GHz processor and
1-GB RAM. There are two attributes of particular interest,
the time required for computing the multicommodity flow
with IPOPT and the time required for deriving the traffic
distribution ratio (including link weight optimization)
with PEFT.

We have tested our implementation by averaging the
measured times over 100 executions. The evaluation results
are shown in Table 3. Clearly, the total time (IPOPT link
weight and PEFT flow splitting ratio computation) spent
for the PEFT weight optimizer for the canonical and
interlink tree is around 2 seconds and is about 4 seconds
for the fat-tree topology. The reason for this gap is due to
the large number of switches employed in the architecture.
Nonetheless, the results indicate that the overhead for
computing the TE will not be a bottleneck, if PEFT is
scheduled to optimize the network at the interval of every
few minutes or more.

5.2 Hardware-Assisted Monitoring System

During the past few years, several commercial switches
now support the emerging OpenFlow standard. Such
software-defined networking (SDN), i.e., OpenFlow, has

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO.6, JUNE 2013

TABLE 3
Average Running Time for Modified PEFT Weight Optimizer
Topology IPOPT PEFT (seconds)
(seconds)
Canonical Tree 1.232 0.758
Fat Tree 1.956 1.795
Interlink Tree 1.424 1.050

created a new networking paradigm in which program-
mability in the network data path has become possible.
With support from the network equipment vendors, the
low-cost programmable hardware is becoming commodity
for DC equipment. For example, Google is deploying
Openflow-enabled switches in one of its DCs [15].
Borrowing the idea of having a smarter network switch,
in our modified version of PEFT we have used a low-cost
dedicated hardware component in a ToR switch to gather
traffic statistics and link utilization. We have tested an
open source monitoring system [7] on a NetFPGA [23]
programmable router platform. This system enables real-
time packet monitoring on hardware, and the captured
statistics are then passed on to the software plane for finer
grain processing. This monitoring system just resembles
the role of a TM monitoring component in our proposal.
In this test, we have connected two host machines (as
servers) via a NetFPGA router (acting as the ToR switch).
The two host machines transfer data over 1 Gb/s links to the
NetFPGA router that passively monitors traffic (byte counts)
on its input interfaces and then passes it on to the
appropriate output interface. We have compared the
NetFPGA’s forwarding efficiency to examine whether
enabling a line-speed monitoring would degrade the hard-
ware’s forwarding performance. The test results are shown
in Fig. 8. Fig. 8 plots the throughput ratio of the instrumented
system (with monitoring functionality) over that of a plain
switch. It is evident that the hardware-assisted traffic
monitoring implementation incurs no significant deteriora-
tion on the router’s forwarding efficiency, because the
throughput ratios are mostly in the range between 0.99
and 1. This suggests that including line-speed monitoring in
the routing protocol algorithm can be seamlessly accom-
modated using inexpensive hardware acceleration.

6 RELATED WORK

TE techniques can be broadly classified as online and
offline. The difference between online TE and offline TE is

T T T T T
0 50 100 150 200

Index

Fig. 8. Throughput ratio of instrumented (monitoring) system over
plain switch.

TSO AND PEZAROS: IMPROVING DATA CENTER NETWORK UTILIZATION USING NEAR-OPTIMAL TRAFFIC ENGINEERING

the time scale when objective values, such as link weights,
traffic splittings or scheduling of routing are adjusted.
Numerous TE algorithms have been proposed, e.g., [12],
[13], [20], [29], [30], [34], for wide-area Internet topologies.
However, these TE techniques either do not achieve optimal
routing or are too complicated to implement as they require
tunneling. DC operators largely reuse or tweak such
common TE mechanisms to manage DC topologies, yet
these are ineffective due to the diverse DC traffic
characteristics [9]. In contrast to other TE techniques, PEFT
[34] only relies on the TM and achieves both optimality and
simplicity since packet forwarding decisions are only made
on a hop-by-hop basis.

TE for DC networks is still in a preliminary stage. Recent
works include [6], [9], [19], [28]. Most of the current DC
topologies rely on ECMP [19] forwarding, the most
dominant TE for DCs, to split traffic among multiple paths
of equal cost. An improved centralized TE technique,
Hedera [6] flow scheduler schedules “elephant” flows
exceeding 10 percent of the host-NIC bandwidth while the
switches route “mice” flows using ECMP. In comparison,
VL2 [16] uses Valiant Load Balancing to randomize packet
forwarding on a per-flow basis over a virtual layer-2
infrastructure.

The most relevant work to ours is MicroTE [9], a system
that adapts to traffic variations by leveraging the short term
and partial predictability of the DC TM, to achieve fine
grained TE for DC. However, MicroTE only slightly
outperforms ECMP and it also exhibits 1 to 15 percent
deviation from optimum. This is because the predictability
of TM is largely due to the behavior of individual
applications. Without knowing the application-layer infor-
mation, prediction of TM is very difficult in a DC
environment. This proposal also requires additional hard-
ware investment and is complex to implement. In addition,
[21] has concluded that traffic in large DCs is bursty in
nature and unpredictable, which makes performance of TM
prediction-based TE questionable. In comparison, our
proposal does not reply on inaccurate prediction of the
TM and still achieves near-optimal performance.

7 CONCLUSION

In this paper, we have advocated the use of online unequal
cost TE as an efficient and viable mechanism to improve load-
balancing and performance over DC topologies, offering
substantial improvements over the commonly employed
ECMP and other TE technique for DC such as MicroTE and
Hedera, both can only provide 0-5 percent improvement over
ECMP. We have implemented and thoroughly evaluated a
variant of PEFT targeted at DC environments that exhibit
rapid fluctuations in traffic demands. Based on PEFT
algorithm, our protocol forwards packets over multiple
unequal cost paths, whereas traffic splitting decisions are
independently made based on the total link weight over all
reachable paths, and exponentially penalize longer ones. We
have demonstrated its applicability for DC network archi-
tectures through rigorous and extensive simulation. Evalua-
tion results reveal that PEFT achieves near-optimal TE and
outperforms ECMP in many ways, including fairer network-
wide trafficload-balancing, minimizing MLU, and increasing

1147

network capacity. We have proposed anovel architecture that
interlinks edge switches to further increase physical path
diversity between any communicating server pairs. This
straight-forward modification provides significant perfor-
mance gains both in reducing MLU as well as in increasing
network capacity, without requiring additional investment
from DC network operators. Future work will concentrate on
a prototype testbed implementation of the PEFT algorithm on
a programmable-hardware router platform, and investigate
the effects of increased packet reordering on application
performance with MTCP and Packetscatter.

REFERENCES

[1] IBM ILOG CPLEX Optimizer, www.ibm.com/software/
integration/optimization/cplex-optimizer/, 2013.

[2] Interior Point OPTimizer (Ipopt), https://projects.coin-or.org/
Ipopt, 2013.

[3] A Modeling Language for Math. Programming (AMPL), http://
www.ampl.com/, 2013.

[4] ns-3, http://www.nsnam.org/, 2013.

[5S] M. Al-Fares, A. Loukissas, and A. Vahdat, “A Scalable Commod-
ity Data Center Network Architecture,” Proc. ACM SIGCOMM,
2008.

[6] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat, “Hedera: Dynamic Flow Scheduling for Data
Center Networks,” Proc. Seventh USENIX Symp. Networked
Systems Design and Implementation (NSDI '10), 2010.

[71 G. Antichi and A.W. Moore, “Monitoring System,” http://
netfpga.org/foswiki/bin/view /NetFPGA /OneGig/Monitoring
System, 2013.

[8] T. Benson, A. Akella, and D. Maltz, “Network Traffic Character-
istics of Data Centers in the Wild,” Proc. Internet Measurement Conf.
(IMC), 2010.

[9] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine
Grained Traffic Engineering for Data Centers,” Proc. ACM
CoNEXT, 2011.

[10] Cisco Systems, “Data Center: Load Balancing Data Center Services
Solutions Reference Network Design,” Mar. 2004.

[11] A. Curtis,]. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
B.S, “Devoflow: Scaling Flow Management for High-Performance
Networks,” Proc. ACM SIGCOMM, 2011.

[12] A.Elwalid, C. Jin, S. Low, and I. Widjaja, “"MATE: MPLS Adaptive
Traffic Engineering,” Proc. IEEE INFOCOM, 2001.

[13] B. Fortz and M. Thorup, “Increasing Internet Capacity using Local
Search,” Computational Optimization and Applications, vol. 29, no. 1,
pp- 13-48, 2004.

[14] P. Gill, N. Jain, and N. Nagappan, “Understanding Network
Failures in Data Centers: Measurement, Analysis, and Implica-
tions,” Proc. ACM SIGCOMM, 2011.

[15] O. Google. http://www.opennetsummit.org/talks/ONS2012/
hoelzle-tue-openflow.pdf, 2013.

[16] A. Greenberg,]. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D.A. Maltz, P. Patel, and S. Sengupta, “VL2: A Scalable and
Flexible Data Center Network,” Proc. ACM SIGCOMM, 2009.

[17] LM.T.W. Group, http://datatracker.ietf.org/wg/mptcp/, 2013.

[18] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “A Scalable
and Fault-Tolerant Network Structure for Data Centers,” Proc.
ACM SIGCOMM, 2008.

[19] U. Hoelzle and L.A. Barroso, The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. Morgan and
Claypool Publishers, 2009.

[20] C. Hopps, “Analysis of an Equal-Cost Multi-Path Algorithm,”
RFC 2992, IETF, 2000.

[21] S. Kandula, D. Katabi, B. Davie, and A. Charny, “Walking the
Tightrope: Responsive Yet Stable Traffic Engineering,” Proc. ACM
SIGCOMM, 2005.

[22] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken,
“The Nature of Datacenter Traffic: Measurements & Analysis,”
Proc. Internet Measurement Conf. (IMC), 2009.

[23] J. Mudigonda, P. Yalagandula, M. Al-Fares, and].C. Mogul,
“SPAIN: COTS Data-Center Ethernet for Multipathing Over
Arbitrary Topologies,” Proc. Seventh USENIX Conf. Networked
Systems Design and Implementation (NSDI "10), 2010.

1148

[24]
(23]

[20]

(27]

(28]

[29]

(30]

B31]

(32]
(33]

(34]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO.6, JUNE 2013

NetFPGA, http:/ /www.netfpga.org/, 2013.

L. Popal, C. Raiciu, I. Stoica, and D. Rosenblum, “Reducing
Congestion Effects in Wireless Networks by Multipath Routing,”
Proc. IEEE Int’l Conf. Network Protocols (ICNP), 2006.

C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving Datacenter Performance and Robust-
ness with Multipath TCP,” Proc. ACM SIGCOMM, 2011.

M. Schlansker, Y. Turner, J. Tourrilhes, and A. Karp, “Ensemble
Routing for Datacenter Networks,” Proc. ACM/IEEE Sixth Symp.
Architectures for Networking and Comm. Systems (ANCS), 2010.
E.P. Tso and D. Pezaros, “Online PEFT Implementation in C++,”
http://www.dcs.gla.ac.uk/posco/weightsolver/html/index.
html. 2013.

T. Viet, Y. Deville, O. Bonaventure, and F.P, “Traffic Engineering
for Multiple Spanning Tree Protocol in Large Data Centers,” Proc.
23rd Int’l Teletraffic Congress (ITC), 2011.

H. Wang, H. Xie, L. Qiu, R. Yang, Y. Zhang, and A. Greenberg,
“Cope: Traffic Engineering in Dynamic Networks,” Proc. ACM
SIGCOMM, 2006.

Y. Wang, Z. Wang, and L. Zhang, “Internet Traffic Engineering
without Full Mesh Overlaying,” Proc. IEEE INFOCOM, 2001.
Wikipedia, http:/ /en.wikipedia.org/wiki/Hessian_matrix, 2013.
Wikipedia, http://en.wikipedia.org/wiki/Jacobian_matrix_and_
determinant, 2013.

D. Xu, M. Chiang, and J. Rexford, “Link-State Routing with
Hop-by-Hop Forwarding Can Achieve Optimal Traffic Engi-
neering,” IEEE/ACM Trans. Networking, vol. 19, no. 6 pp. 1717-
1730, Apr. 2011.

Fung Po Tso received the PhD degrees in
computer science from City University of Hong
Kong (CityU HK) in 2011. He is currently a
SICSA research fellow at the School of Comput-
ing Science, University of Glasgow, United
Kingdom. He has participated in a number of
Hong Kong ITF funded projects on the areas of
mobile computing and network management.
His current research interests include cloud data
center (DC) networks architecture, management
as well as traffic engineering; distributed computing and mobile
computing. He is a member of the IEEE and the ACM.

Dimitrios P. Pezaros received the BSc degree
in 2000 and the PhD degree in 2005 in computer
science from Lancaster University, and has
been a doctoral fellow of Agilent Technologies
(2000-2004). He is a lecturer (assistant profes-
sor) at the School of Computing Science,
University of Glasgow. His research is currently
focusing on dynamic resource allocation for
Data Center networks, traffic classification, and
measurement-based network control through
software-defined networking. He has also developed an interest in
building scaled-down cloud infrastructures from Raspberry Pi's. Pre-
viously, he has worked as a postdoctoral and senior research associate
on a number of United Kingdom Engineering and Physical Sciences
Research Council (EPSRC) and EU-funded projects, on the areas of
performance measurement and evaluation, network management,
cross-layer optimization, QoS analysis and modeling, and network
resilience. He is a member of the IEEE and the ACM, and a fellow of
the HEA.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

