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Abstract-Software-Defined Networking (SDN) allows for ef­
ficient network-wide Traffic Engineering through the logical 
centralization of the control plane over individual switches that 
perform packet forwarding independently. Such abstraction is 
particularly suitable for Data Center (DC) networks that need 
to react to fluctuating traffic dynamics over short timescales. 

In this paper, we propose a low-cost, SDN-based system 
that exposes the temporal network-wide utilization through 
direct measurement, rather than estimation. We then present 
the Baatdaat1 flow scheduling algorithm which uses spare DC 
network capacity to mitigate the performance degradation of 
heavily utilized links. Results show that Baatdaat achieves close to 
optimal Traffic Engineering by reducing network-wide maximum 
link utilization by up to 18% over ECMP, while at the same time 
improving flow completion time by as much as 41 % - 95% for 
different types of flows. 

I. INTRODUCTION 

Cloud computing is emerging as an important paradigm 
where ICT resources are outsourced and hosted over generic 
Data Center network infrastructures which need to accommo­
date a wide range of services, from private data processing 
to public website hosting. With the ability for a tenant to 
instantaneously initialize resources and use them for a diverse 
set of processing tasks, this can make DC network traffic 
highly unpredictable. 

Server and network infrastructure typically account for 45% 
and 15% of the overall cost of a Cloud DC, respectively 
[1]. However, the network often constitutes a barrier to DC 
performance since it can fragment resources, leading to low 
server utilization [2]. Today's DCs mostly run massive data 
analysis applications, such as, e.g., computing the web search 
index, that require extensive cOlmnunication between servers, 
and hence the speed of computation is hindered by congestion­
led propagation delay between servers. Therefore, overall 
Return-On-Investment (ROI) for Cloud providers can be sig­
nificantly increased by improving the network performance of 
the underlying DC topology. 

Equal Cost Multipath (ECMP) forwarding is conunonly 
deployed to split traffic flows across redundant shortest paths. 
ECMP is easy to implement as it statically hashes one or more 
tuples of packet headers (e.g., protocol, source/destination 
address, port, etc.) and subsequently schedules flows based 
on their hashed values, ensuring that packets of the same flow 
are all scheduled over the same path. However, it is shown 
that ECMP's static and imperfect hashing produces uneven 

1 Baa/daat is Cantonese for "reachable in all directions ". 
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load distribution for large [3] and small [4] flow sizes, which 
eventually leads to congestion [5]. An alternative is therefore 
required that can efficiently route traffic flows through a DC 
network in real-time based on temporal traffic dynamics, while 
limiting or avoiding congestion on any link. 

It is well-documented that DCs typically exhibit highly 
bursty traffic characteristics and encounter congestion across 
a significant number of links [2], especially at higher layers 
of the topology which are often significantly oversubscribed 
[5]. Novel DC architectures and traffic engineering (TE) 
techniques have been proposed to alleviate congestion mainly 
through distributing load over redundant paths. However, they 
either don't take current network state into consideration [6], 
[7], they require application adaptation [8], or they only con­
sider a limited number of shortest paths hence not exploiting 
the full topological diversity [3]. 

In this paper, we introduce Baatdaat, a novel flow scheduler 
for reducing congestion in DC networks based on real-time 
direct measurements of network utilization, and the use of 
non-shortest albeit lightly-utilized paths (detours) to schedule 
traffic flows. 

Unlike wide-area Internet topologies, DCs are densely 
packed with servers requiring only a small number of hops 
and a small propagation delay to reach any other server. With 
this in mind, we believe congestion can be minimized while 
at the same time flow completion times can be reduced, since 
the marginally increased latency due to a detour can be offset 
by less packet drops and retransmissions over less congested 
links. In order to realize this traffic engineering scheme, we 
exploit Software Defined Networking (SDN) to analyze and 
schedule flows in real-time. SDN is a fairly recent concept 
of centralizing the network's control plane so that network­
wide management can be centrally programmed in software 
and subsequently enforced through the installation of rules 
on the switches along the path. OpenFlow [9] is an example 
of SDN that can run in network switches, with forwarding 
decisions taken by a centralized controller. OpenFlow is being 
increasingly supported by switch vendors in production envi­
ronments to test and deploy novel networking protocols and 
routing algorithms over legacy infrastructures [10], [11]. 

Baatdaat uses OpenFiow running on NetFPGA pro­
grarmnable switches [12], that enables real-time dynamic flow 
scheduling which can adapt to instantaneous traffic bursts as 
well as to average link load. Our scheduling system uses 
hardware-assisted switch-local link utilization measurements 
that are periodically aggregated to a central controller which in 
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turn builds a topology-wide network utilization map. Flows are 
subsequently scheduled over lightly utilized paths, allowing 
detours and improving flow completion time. Unlike existing 
approaches that try to randomize load balancing (e.g., ECMP, 
VL2), our flow scheduler actively avoids congested links, 
and does not require any changes at the application level to 
improve global network performance. 

The main contributions of this work are: 

• A hardware-assisted traffic monitor that measures link 
utilization on the switches at line-speed. 

• A SDN-based adaptive flow scheduling system that or­
chestrates and enforces network-wide Traffic Engineering 
based on link-local metrics. 

• Network-wide congestion reduction for DC networks 
over existing scheduling algorithms by spreading load 
over shortest and detour paths, while at the same time 
reducing flow completion times. 

Our results show that Baatdaat can achieve close to optimal 
Traffic Engineering, improving over ECMP by up to 18% for 
different types of load [8]. Although long-term provisioning 
of DC infrastructures is necessary to accommodate growth 
in service demand, the improved network utilization offered 
by Baatdaat over short timescales can provide the necessary 
short-term traffic shaping to avoid resource outages at the onset 
of sudden traffic dynamics. 

The remainder of the paper is structured as follows. 
Section II discusses the motivation and rationale behind 
measurement-based flow scheduling for Cloud DC topologies. 
Section III presents Baatdaat's algorithmic and implementa­
tion details, and its different hardware and software compo­
nents. Section IV presents the experimental results demonstrat­
ing Baatdaat's improved DC-wide utilization, flow completion 
times and low overhead. Section V discusses related work and 
Section VI concludes the paper. 

II. MOTIVATION AND RATIONALE 

A. Data Center Traffic Patterns 

A number of studies have looked into traffic patterns exhib­
ited by Cloud DCs, revealing some interesting idiosyncrasies. 
Although a significant fraction of traffic appears to be localized 
and staying inside a rack, congestion does occur in various lay­
ers of the infrastructure despite sufficient capacity being avail­
able elsewhere that could be used to alleviate hotspots [13]. 
Congestion is shown to deteriorate application performance by 
reducing server-to-server I/O throughput [2]. In terms of flow 
distribution characteristics, data mining and web service DCs 
mostly exhibit small flows typically completed within Is. Flow 
inter-arrival times vary from 1 flow per 15 milliseconds to 100 
flows per millisecond at servers and Top-of-Rack switches, 
respectively, while on average, there are 10 concurrent flows 
per server active at any given time [2], [4], [7]. Last but not 
least, DC traffic patterns change rapidly and unpredictably 
due to the use of pseudo-random processes to improve DC 
application performance [7]. 

ECMP is shown to perform suboptimally with such traffic 
patterns and not being able to mitigate congestion [2], [4]. 
Alternative offline traffic engineering techniques that require 
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advance knowledge of traffic demands are also unsuitable for 
such environments that exhibit long-term unpredictability due 
to small and bursty flows in the Cloud DCs. Small flow sizes 
and inter-arrival times also put recently proposed TE tech­
niques based on centralized decision making, e.g., OpenFlow, 
under question, since the central scheduler would have to 
deal with a rather high volume of scheduling requests in very 
short time intervals. For example, MicroTE largely depends on 
predictable traffic demands, hence not providing any obvious 
performance gain over ECMP in such environments [8]. Worse 
still, forwarding every flow to the controller would severely 
impact the delay-sensitive (i.e., deadline-aware) small flows. 
Hedera on the other hand, only schedules large flows and 
would therefore have minimal or no performance gain over 
ECMP under the observed Cloud DC traffic patterns [3]. The 
above observations call for an adaptive load-aware scheduler 
that would react in short timescales, based on the temporal 
traffic demands and would leverage spare capacity elsewhere 
to mitigate congestion. 

B. Optimality 

Consider a network as a directed graph G = (V, IE), where 
V is the set of nodes (where N = IVI), E is the set of links 
(where E = IIEI), and link (u, v ) has capacity cu,v' The offered 
traffic is represented by a traffic matrix D(s, t) for source­
destination pairs indexed by (s, t). Let the flow of packets 
destined to a single destination on link (u,v) be fu,v. TE 
typically considers a link-cost function <1>( {Ju,v, cu,v}) that is 
an increasing function of fu,v, such as, e.g., the link utilization 
function fu,v/cu,v' Thus, such TE must meet the requirement 
in Equation 1, assuming f� v is the flow of packets destined 
to node t over link (u, v ) . 

' 

min <1>( {Ju,v, cu,v}) (la) 

s.t. L f;,v - L f� s = D(s, t)Vs i= t 
v:(s,v)EIE u:(u,s)EIE 

(lb) 

fu,v � L f�,v � cu,v V( u, v ) (lc) 
tEV 

vars. f� v' fu,v 2: O. (ld) 

However, finding flow routes in a general network while 
not exceeding the capacity of any link is the multicommodity 
flow problem which is NP-complete for integer number of 
flows [14]. The Penalizing Exponential Flow spliTting [15] 
scheme can achieve optimal traffic engineering for such mul­
ticommodity flow by allowing packet forwarding through non­
shortest paths and non-integer link weights. [16] modified 
and implemented PEFT for DC environments, yet it requires 
substantial modifications of the existing networking hardware. 
In light of this, Baatdaat trades optimality for deploy-ability, 
and uses practical heuristics to leverage non-shortest paths and 
significantly improve DC performance over existing schemes. 
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Fig. 1: System architecture. 

III. SY STEM DESIGN & ARCHITECTURE 

A. Design Requirements 

Clearly, a system that performs flow scheduling based on 
real-time link status feedback has to meet the following design 
requirements: 

• Rl: Each switch should be able to monitor link utilization 
of its associated links at line rate. 

• R2: Flows should be allowed to opportunistically take 
detours (i.e., longer paths) where it is beneficial to do so. 

• R3: Global flow scheduling should easily scale to the size 
of a DC network. 

While current switches do not typically support link mea­
surements, Rl requires the ability to conduct line-rate mea­
surement on switches without impacting their forwarding 
performance. We have implemented such a component along­
side NetFPGA's OpenFlow implementation [12]. R2 is highly 
desirable given the numerous measurement studies unveiling 
that DC networks generally remain underutilized, albeit with 
a small fraction of congested links [5]. Using non-shortest 
paths to route traffic can improve network-wide utilization, 
so long as it doesn't impact individual flow performance. 
Scalability, R3, is crucial for centralized approaches since 
efficiency of the controller has a direct impact on the per­
formance of the network as a whole. In order not to turn the 
controller into a performance bottleneck, we have adopted a 
mix of distributed and centralized scheduling approaches for 
Baatdaat. First, all switches individually monitor their link 
utilization and independently schedule flows onto the links, 
while the controller only determines detour paths. This way, 
the controller's workload can be significantly reduced. To this 
extent, the Baatdaat architecture is composed by OpenFlow 
switches in DC-compatible arrangements such as, e.g., canon­
ical and fat-tree, and a single OpenFlow controller to collect 
link utilization statistics amongst aggregation switches and to 
determine flow detours, as shown in Fig. 1. 

B. Measurement Module Design & Implementation 

OpenFlow pushes forwarding decisions onto a logically 
centralized controller, which can in turn add and remove for­
warding entries in OpenFlow switches. This form of network 
virtualization abstracts complexity from hardware to controller 
software, allowing control logic to be defined and programmed 
in software. Each OpenFlow switch matches incoming flows 

978-1-4799-3755-4/13/$31.00 ©2013 IEEE 

Open Flow Output Port Lookup 

Fig. 2: Design of the link utilization module within the OpenFlow 
switch pipeline. 

using exact-match or wildcards on specific protocol fields. If 
a match is not found for an arriving packet, the packet is sent 
to the controller which registers the new flow and decides on 
the action(s) that should be applied to all subsequent packets 
matching the same filter. The action is then sent to the switch 
and cached as an entry in the switch's flow table. Subsequent 
packets belonging to the same flow are then directly forwarded 
at line-rate through the switch without the need for redirection 
to the controller. 

We have implemented a hardware-based link measurement 
module in-line with NetFPGA's OpenFlow switch implemen­
tation [17], as illustrated in Fig. 2. As soon as a packet arrives 
at the input port, the link utilization module adds the size of 
the packet to the overall bytes arriving on the specific link. 
Similarly, after the packet is processed by the output port 
lookup, its size will be added to the total for the outgoing 
link. After a specified time interval the link utilization will be 
calculated. 

C. Baatdaat Scheduling 

Intuitively, the scheduling loop should be short enough 
to capture all flow interarrivals. In this case, centralized 
schedulers that decide which path to pin a flow on may be 
hard pressed to keep up and may generate high control traffic 
overhead. While it is reported that flow inter-arrivals per switch 
port can be as long as 10-15 ms for Cloud DCs, we set 
our measurement loop to run every 1 ms by default with an 
aim to capture instantaneous traffic bursts. The measurement 
results are stored locally as an array of size equivalent to 
the number of ports in the switch. Baatdaat is a flow-based 
scheduler that uses 5-tuple header hashing to guarantee packets 
belonging to the same flow traverse the same path, so that 
packet re-ordering is avoided. Hence, when a new flow joins, 
the switch first queries the number of outgoing ports, such as 
output ports for multiple shortest paths, and then places the 
flow onto the least utilized link by comparing their measured 
link utilization. When all outgoing links are reported to have 
the same utilization, such as all links are 0% utilization right 
after initialization, the flow is then randomly scheduled using 
commodity ECMP. Aggregation switches, however, need to 
report statistics to the controller, which will determine whether 
or not the new flow should take a detour. 

To make the scheduling manageable, we impose three 
constraints on any flow taking a detour: 1) the flow is downlink 
traffic from the aggregation switches. This means detours 
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only happen between the aggregation and the Top-of-Rack 
(ToR) layers of the DC topology. In DCs, cross-aggregation­
switch traffic is more common than cross core switch due 
to the traffic locality nature of DC networks. The multi­
root tree architecture provides large amounts of interconnect 
between aggregation and ToR layers, up to a full mesh in 
a fat-tree topology. This offers significant path diversity if 
detour is allowed; 2) the link utilization of shortest paths is 
?:30%. Without a threshold value, Baatdaat would schedule 
traffic on longer paths even when shortest paths are lightly 
utilized. However, if the threshold is ?:50%, the detour scheme 
sometimes does not come into effect before shortest paths 
become substantially congested; 3) the flow can only take 
a detour of 2 hops longer than the shortest path to prevent 
oscillation and flooding-like effects in the network. 

While each switch keeps link utilization values locally in 
the form of an array, the controller maintains a link utilization 
matrix, M. Only aggregation switches send and update link 
utilization of their associated links to the OpenFlow controller. 
Assuming M is a mxn matrix, m denotes the number of ag­
gregation switches in a pod, while n is the number of downlink 
ports on an aggregation switch. For ease of presentation, we 
assume switches and their ports are sequentially numbered. 
For example, Mij is the link utilization of port j of switch i. 
By allowing the detour, path diversity in the fat tree network 
increases by kj2 x (kj2 - 1) x (kj2 - 2) compared to the 
original shortest path scheme which provides a path diversity 
of kj2. The link utilization of detour paths is defined as 
max ( detour links) x c, where c is a weighting factor to reflect 
the fact that it is a longer path. In our simulation we found 
that c = 1.5 works well as it gives good detour opportunity. 
We set c > 1 to bias longer paths, but setting c ?: 2 will see 
significant decrease in detour opportunities. The next question 
is, how does the controller determine detour paths? Clearly, 
since detour paths are limited to being no more than two hops 
longer than shortest paths and only happen in the aggregation­
ToR layer, so starting from any aggregation switch, any detour 
of 2 more hops will lead to a path of 4 hops. Hence, the 
algorithm starts by constructing an acyclic tree of depth 3 as 
shown in Fig. 3, with k switches as vertices and links among 
them as edges. Depth-first search is then applied to identify 
and compute link utilization along the path. The OpenFlow 
controller, after determining a detour path for a new flow, 
installs the OpenFiow entry to all affected switches. 

Clearly, the time complexity of this search is O((kj2-1)2) 
for a fat-tree topology although the search tree has a depth 
of 3. For a k-ary fat-tree, there are kj2 aggregation and 
ToR switches in a pod, respectively. In the example given in 
Fig. 3 we can see that the sequence for a detour path is: (ToR 
switch linkl aggregation switch link2 ToR link3 aggregation 
switch link4 ToR). As link 1 is independently chosen by the 
ToR switch itself, link 2 - link 3 - link 4 is the actual 
detour determined by the controller. Therefore, starting from 
an aggregation switch, due to the dense interconnected nature 
of each pod, it has kj2 links to ToR switches including the 
source node. But the source ToR switch has to be excluded 
to prevent a loop, so the algorithm only needs to search for 
(and to compute link utilization of) kj2 - 1 links at the first 
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Fig. 3: Example of a calculated detour in a pod, assuming a flow is 
to be forwarded from node 4 to node 5. 

iteration (depth 1) for link 1. Similarly, there are kj2 - 1 
iterations each at the depth 2 for link 3. The complexity 
so far is O((kj2 - 1)2). However, for link 4, due to the 
mesh interconnect of aggregation-ToR switches, the next hop 
must contain the destination node. Hence, the algorithm does 
not need to search any further and the overall complexity is 
O((kj2 -1)2). 

IV. PERFORMANCE EVALUATION 

In this section, we evaluate the performance of Baatdaat 
with respect to reduced network-wide maximum link utiliza­
tion and improved load-balancing due to path diversity. In 
order to test the properties of our system at scale, we have 
used the ns-3 network simulator for network-wide properties, 
and our hardware-assisted testbed implementation to evaluate 
the footprint of the time-critical processing elements. 

A. Simulation Setup 

We have simulated a k = 8 fat-tree topology (128 servers 
grouped into 8 pods with 8 switches each) with IGb/s inter­
connect links and the OpenFiow module enabled. Simulated 
flows consist of uniformly chosen 4 KB, 8 KB, and 100 KB 
flows, to include the range of latency-sensitive flows COlmnon 
in DC networks. The traffic is generated by sending these 
uniform flows to 100 other servers at different racks to create 
high and imbalanced network load. 

B. Network-wide Experimental Results 

Fig. 4 shows the measured Maximum Link Utilization 
(MLU) for 4 KB, 8 KB and 100 KB flows for ECMP and 
Baatdaat approaches, respectively. The results demonstrate 
that Baatdaat consistently outperforms ECMP for all types 
of flows by up to 18%, which is almost the amount by which 
ECMP deviates from optimal (15%-20%) under high load [8]. 

Looking more closely into the CDFs, the improvement for 
4 KB flows is more uniform between the 30% - 70% of the 
MLU region. Interestingly, for 8 KB flows, the improvement 
is more significant around the 60% MLU region, and the 
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Fig. 4: COF of maximum link utilization for 4 KB, 8 KB and 100 KB flows respectively. 
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Fig. 5: COF of flow completion time for 4 KB, 8 KB and 100 KB flows respectively. 

improvement for 100 KB flows is more visible around the 70% 
MLU region, which demonstrates that the detour approach 
efficiently mitigates the increased congestion by offtoading 
some flows onto less congested albeit longer paths. This is 
an important feature since it offers an additional 10-18% 
headroom to DC providers using short-term TE to avoid 
resource outages due to temporal increases in traffic. 

Since DC RTTs can be as low as 250f.Ls [4], can a detour of 
two more hops degrade individual flow completion time? We 
show the flow completion times for 4 KB, 8 KB and 100 KB 
flows for ECMP and Baatdaat, respectively, in Fig. 5a, 5b, and 
5c. While most traffic flows complete within 1 ms for 4 KB, 
3ms for 8 KB and 10 ms for 100 KB flows, we can also see 
that Baatdaat can significantly improve flow completion time, 
particularly between the 60th - 100th percentile. Obviously, 
this result demonstrates that allowing detour not only does not 
deteriorate but rather it improves flow completion time. ECMP 
is slightly better than Baatdaat in the 30th percentile, due to 
small flows being more latency sensitive, and detour adding a 
little extra (:s; 1 ms) transmission time. However, we can see in 
the 70th - 100th percentile, at least 10% flows complete faster 
in Baatdaat than they do in ECMP. Allowing larger number 
of flows to complete faster is an important feature for data 
center networks because many Web applications that run over 
these topologies require strict deadlines [4]. 

C. Hardware Module Peiformance 

We have evaluated the impact of the real-time hardware 
measurement module on the NetFPGA's packet switching 
performance using a back-to-back high-speed throughput test. 
Two host machines connected via a NetFPGA switch ex­
changed data at full 1 Gb/s NIC speed. The NetFPGA switch 
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monitors traffic (byte counts) on its input interfaces and then 
passes packets onto the appropriate output interface. We have 
compared the NetFPGA's forwarding efficiency to examine 
whether enabling line-rate monitoring would impact the hard­
ware's forwarding efficiency. Fig. 6 shows the throughput ratio 
of the instrumented system (with monitoring functionality) 
over that of a plain switch. It is evident that the in-line traffic 
monitoring implementation incurs no significant deterioration 
on the router's forwarding efficiency, since the throughput 
ratios are mostly in the range between 0.99 and 1. This implies 
that including real-time network monitoring in the routing 
protocol algorithm can be seamlessly accommodated using 
commodity and inexpensive hardware acceleration. 

V. RELATED WORK 

Traffic Engineering and routing techniques have been 
widely used for Internet topologies [18], [19], [20]. However, 
they do not achieve optimal routing or are often based on 
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steady or highly predictable traffic, something that constitutes 
them unsuitable for DC networks. 

With the increasing use of Cloud computing over DC infras­
tructures, new routing schemes have been developed to exploit 
their highly-connected nature. Fat-tree, the most dominant 
topology in DCs today, typically employs ECMP [6] to balance 
traffic load amongst redundant shortest paths. However, ECMP 
suffers from hash collisions, which can result in an imbalance 
of flow allocations across paths. VL2 [7] is a virtual layer 2 
infrastructure which uses Valiant Load Balancing (VLB) to 
randomize packet forwarding, and essentially exhibits similar 
limitations to those of ECMP [3]. 

Hedera [3] complements ECMP by identifying large flows 
exceeding 100 Mb/s via monitoring of throughput at network 
edge switches and then scheduling these flows along a re­
dundant path with suitable capacity. However, this approach 
becomes limited as network utilization increases and flows 
fair-share the bottleneck bandwidth. On the contrary, our work 
attempts to place flows based on minimum link utilization and 
independent of flow size. PEFT uses a mix of shortest and 
non-shortest paths with exponential penalisation on the latter 
[15]. It has been shown to achieve optimal routing for Internet 
networks with decisions made on a hop-by-hop basis, but it 
is designed for offline traffic engineering over ISP topologies 
with predictable traffic matrices, not the highly unpredictable 
DC traffic characteristics that occur even over long timescales. 
DeTail [4] attempts to reduce flow completion time in DC 
networks for web site load times by using flow priorities and 
switch port buffer occupancies to determine next hop behavior. 
However, DeTail requires major changes at several layers 
of the networking stack, and applications must be modified 
to communicate flow priorities for latency-sensitive traffic 
scheduling. Baatdaat is much simpler to deploy, requiring 
no in-depth knowledge of individual application flows, yet 
still significantly reducing flow completion time in congested 
networks. MicroTE [8] uses short-term traffic patterns and 
partial predictability to achieve its goals. However, with highly 
unpredictable DC traffic, it becomes equivalent to or worse 
than ECMP, and requires significant changes to end hosts as 
traffic monitoring duties are pushed to servers. 

VI. CONCLUSION 

In this paper we have presented Baatdaat, a novel flow 
scheduling system for DC networks. Baatdaat uses a modified 
NetFPGA implementation of OpenFlow to directly measure 
the temporal, network-wide utilization of the infrastructure and 
to subsequently schedule flows over redundant lightly-utilized 
and non-shortest paths. Unlike existing flow scheduling algo­
rithms, Baatdaat takes into consideration the current state of 
the network and dynamically adapts scheduling to make use of 
local link utilization information available at each switch, and 
improves network performance on a global scale. Moreover, 
it can be readily deployed in DCs already running OpenFlow­
enabled switches. 
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Simulation results have shown that Baatdaat can sub­
stantially improve flow completion time in the presence of 
congestion, and achieves close to optimal Traffic Engineering 
through reducing network-wide utilization by up to 18% over 
ECMP. Results on the NetFPGA platform demonstrate that 
traffic monitoring and real-time flow-level scheduling can 
be seamlessly incorporated into appropriately instrumented 
switches without impacting their forwarding performance. 
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