
Baatdaat: Measurement-Based Flow Scheduling
for Cloud Data Centers

Fung Po Tso and Dimitrios P. Pezaros
School of Computing Science, University of Glasgow, G 12 8QQ, UK

Email: {posco.tso.dimitrios.pezaros}@glasgow.ac.uk

Abstract-Software-Defined Networking (SDN) allows for ef­
ficient network-wide Traffic Engineering through the logical
centralization of the control plane over individual switches that
perform packet forwarding independently. Such abstraction is
particularly suitable for Data Center (DC) networks that need
to react to fluctuating traffic dynamics over short timescales.

In this paper, we propose a low-cost, SDN-based system
that exposes the temporal network-wide utilization through
direct measurement, rather than estimation. We then present
the Baatdaat1 flow scheduling algorithm which uses spare DC
network capacity to mitigate the performance degradation of
heavily utilized links. Results show that Baatdaat achieves close to
optimal Traffic Engineering by reducing network-wide maximum
link utilization by up to 18% over ECMP, while at the same time
improving flow completion time by as much as 41 % - 95% for
different types of flows.

I. INTRODUCTION

Cloud computing is emerging as an important paradigm
where ICT resources are outsourced and hosted over generic
Data Center network infrastructures which need to accommo­
date a wide range of services, from private data processing
to public website hosting. With the ability for a tenant to
instantaneously initialize resources and use them for a diverse
set of processing tasks, this can make DC network traffic
highly unpredictable.

Server and network infrastructure typically account for 45%
and 15% of the overall cost of a Cloud DC, respectively
[1]. However, the network often constitutes a barrier to DC
performance since it can fragment resources, leading to low
server utilization [2]. Today's DCs mostly run massive data
analysis applications, such as, e.g., computing the web search
index, that require extensive cOlmnunication between servers,
and hence the speed of computation is hindered by congestion­
led propagation delay between servers. Therefore, overall
Return-On-Investment (ROI) for Cloud providers can be sig­
nificantly increased by improving the network performance of
the underlying DC topology.

Equal Cost Multipath (ECMP) forwarding is conunonly
deployed to split traffic flows across redundant shortest paths.
ECMP is easy to implement as it statically hashes one or more
tuples of packet headers (e.g., protocol, source/destination
address, port, etc.) and subsequently schedules flows based
on their hashed values, ensuring that packets of the same flow
are all scheduled over the same path. However, it is shown
that ECMP's static and imperfect hashing produces uneven

1 Baa/daat is Cantonese for "reachable in all directions ".

978-1-4799-3755-4/13/$31.00 ©2013 IEEE

load distribution for large [3] and small [4] flow sizes, which
eventually leads to congestion [5]. An alternative is therefore
required that can efficiently route traffic flows through a DC
network in real-time based on temporal traffic dynamics, while
limiting or avoiding congestion on any link.

It is well-documented that DCs typically exhibit highly
bursty traffic characteristics and encounter congestion across
a significant number of links [2], especially at higher layers
of the topology which are often significantly oversubscribed
[5]. Novel DC architectures and traffic engineering (TE)
techniques have been proposed to alleviate congestion mainly
through distributing load over redundant paths. However, they
either don't take current network state into consideration [6],
[7], they require application adaptation [8], or they only con­
sider a limited number of shortest paths hence not exploiting
the full topological diversity [3].

In this paper, we introduce Baatdaat, a novel flow scheduler
for reducing congestion in DC networks based on real-time
direct measurements of network utilization, and the use of
non-shortest albeit lightly-utilized paths (detours) to schedule
traffic flows.

Unlike wide-area Internet topologies, DCs are densely
packed with servers requiring only a small number of hops
and a small propagation delay to reach any other server. With
this in mind, we believe congestion can be minimized while
at the same time flow completion times can be reduced, since
the marginally increased latency due to a detour can be offset
by less packet drops and retransmissions over less congested
links. In order to realize this traffic engineering scheme, we
exploit Software Defined Networking (SDN) to analyze and
schedule flows in real-time. SDN is a fairly recent concept
of centralizing the network's control plane so that network­
wide management can be centrally programmed in software
and subsequently enforced through the installation of rules
on the switches along the path. OpenFlow [9] is an example
of SDN that can run in network switches, with forwarding
decisions taken by a centralized controller. OpenFlow is being
increasingly supported by switch vendors in production envi­
ronments to test and deploy novel networking protocols and
routing algorithms over legacy infrastructures [10], [11].

Baatdaat uses OpenFiow running on NetFPGA pro­
grarmnable switches [12], that enables real-time dynamic flow
scheduling which can adapt to instantaneous traffic bursts as
well as to average link load. Our scheduling system uses
hardware-assisted switch-local link utilization measurements
that are periodically aggregated to a central controller which in

000765

turn builds a topology-wide network utilization map. Flows are
subsequently scheduled over lightly utilized paths, allowing
detours and improving flow completion time. Unlike existing
approaches that try to randomize load balancing (e.g., ECMP,
VL2), our flow scheduler actively avoids congested links,
and does not require any changes at the application level to
improve global network performance.

The main contributions of this work are:

• A hardware-assisted traffic monitor that measures link
utilization on the switches at line-speed.

• A SDN-based adaptive flow scheduling system that or­
chestrates and enforces network-wide Traffic Engineering
based on link-local metrics.

• Network-wide congestion reduction for DC networks
over existing scheduling algorithms by spreading load
over shortest and detour paths, while at the same time
reducing flow completion times.

Our results show that Baatdaat can achieve close to optimal
Traffic Engineering, improving over ECMP by up to 18% for
different types of load [8]. Although long-term provisioning
of DC infrastructures is necessary to accommodate growth
in service demand, the improved network utilization offered
by Baatdaat over short timescales can provide the necessary
short-term traffic shaping to avoid resource outages at the onset
of sudden traffic dynamics.

The remainder of the paper is structured as follows.
Section II discusses the motivation and rationale behind
measurement-based flow scheduling for Cloud DC topologies.
Section III presents Baatdaat's algorithmic and implementa­
tion details, and its different hardware and software compo­
nents. Section IV presents the experimental results demonstrat­
ing Baatdaat's improved DC-wide utilization, flow completion
times and low overhead. Section V discusses related work and
Section VI concludes the paper.

II. MOTIVATION AND RATIONALE

A. Data Center Traffic Patterns

A number of studies have looked into traffic patterns exhib­
ited by Cloud DCs, revealing some interesting idiosyncrasies.
Although a significant fraction of traffic appears to be localized
and staying inside a rack, congestion does occur in various lay­
ers of the infrastructure despite sufficient capacity being avail­
able elsewhere that could be used to alleviate hotspots [13].
Congestion is shown to deteriorate application performance by
reducing server-to-server I/O throughput [2]. In terms of flow
distribution characteristics, data mining and web service DCs
mostly exhibit small flows typically completed within Is. Flow
inter-arrival times vary from 1 flow per 15 milliseconds to 100
flows per millisecond at servers and Top-of-Rack switches,
respectively, while on average, there are 10 concurrent flows
per server active at any given time [2], [4], [7]. Last but not
least, DC traffic patterns change rapidly and unpredictably
due to the use of pseudo-random processes to improve DC
application performance [7].

ECMP is shown to perform suboptimally with such traffic
patterns and not being able to mitigate congestion [2], [4].
Alternative offline traffic engineering techniques that require

978-1-4799-3755-4/13/$31.00 ©2013 IEEE

2

advance knowledge of traffic demands are also unsuitable for
such environments that exhibit long-term unpredictability due
to small and bursty flows in the Cloud DCs. Small flow sizes
and inter-arrival times also put recently proposed TE tech­
niques based on centralized decision making, e.g., OpenFlow,
under question, since the central scheduler would have to
deal with a rather high volume of scheduling requests in very
short time intervals. For example, MicroTE largely depends on
predictable traffic demands, hence not providing any obvious
performance gain over ECMP in such environments [8]. Worse
still, forwarding every flow to the controller would severely
impact the delay-sensitive (i.e., deadline-aware) small flows.
Hedera on the other hand, only schedules large flows and
would therefore have minimal or no performance gain over
ECMP under the observed Cloud DC traffic patterns [3]. The
above observations call for an adaptive load-aware scheduler
that would react in short timescales, based on the temporal
traffic demands and would leverage spare capacity elsewhere
to mitigate congestion.

B. Optimality

Consider a network as a directed graph G = (V, IE), where
V is the set of nodes (where N = IVI), E is the set of links
(where E = IIEI), and link (u, v) has capacity cu,v' The offered
traffic is represented by a traffic matrix D(s, t) for source­
destination pairs indexed by (s, t). Let the flow of packets
destined to a single destination on link (u,v) be fu,v. TE
typically considers a link-cost function <1>({Ju,v, cu,v}) that is
an increasing function of fu,v, such as, e.g., the link utilization
function fu,v/cu,v' Thus, such TE must meet the requirement
in Equation 1, assuming f� v is the flow of packets destined
to node t over link (u, v) .

'

min <1>({Ju,v, cu,v}) (la)

s.t. L f;,v - L f� s = D(s, t)Vs i= t
v:(s,v)EIE u:(u,s)EIE

(lb)

fu,v � L f�,v � cu,v V(u, v) (lc)
tEV

vars. f� v' fu,v 2: O. (ld)

However, finding flow routes in a general network while
not exceeding the capacity of any link is the multicommodity
flow problem which is NP-complete for integer number of
flows [14]. The Penalizing Exponential Flow spliTting [15]
scheme can achieve optimal traffic engineering for such mul­
ticommodity flow by allowing packet forwarding through non­
shortest paths and non-integer link weights. [16] modified
and implemented PEFT for DC environments, yet it requires
substantial modifications of the existing networking hardware.
In light of this, Baatdaat trades optimality for deploy-ability,
and uses practical heuristics to leverage non-shortest paths and
significantly improve DC performance over existing schemes.

000766

§Bl Install
Open Flow Switch Flow

Entries

8J
�

..
�

Open Flow Switch Aggregation
Switches

�
Report

Link
OpenFlow Open Flow Switch Utilization
Controller

Network Switches

Fig. 1: System architecture.

III. SY STEM DESIGN & ARCHITECTURE

A. Design Requirements

Clearly, a system that performs flow scheduling based on
real-time link status feedback has to meet the following design
requirements:

• Rl: Each switch should be able to monitor link utilization
of its associated links at line rate.

• R2: Flows should be allowed to opportunistically take
detours (i.e., longer paths) where it is beneficial to do so.

• R3: Global flow scheduling should easily scale to the size
of a DC network.

While current switches do not typically support link mea­
surements, Rl requires the ability to conduct line-rate mea­
surement on switches without impacting their forwarding
performance. We have implemented such a component along­
side NetFPGA's OpenFlow implementation [12]. R2 is highly
desirable given the numerous measurement studies unveiling
that DC networks generally remain underutilized, albeit with
a small fraction of congested links [5]. Using non-shortest
paths to route traffic can improve network-wide utilization,
so long as it doesn't impact individual flow performance.
Scalability, R3, is crucial for centralized approaches since
efficiency of the controller has a direct impact on the per­
formance of the network as a whole. In order not to turn the
controller into a performance bottleneck, we have adopted a
mix of distributed and centralized scheduling approaches for
Baatdaat. First, all switches individually monitor their link
utilization and independently schedule flows onto the links,
while the controller only determines detour paths. This way,
the controller's workload can be significantly reduced. To this
extent, the Baatdaat architecture is composed by OpenFlow
switches in DC-compatible arrangements such as, e.g., canon­
ical and fat-tree, and a single OpenFlow controller to collect
link utilization statistics amongst aggregation switches and to
determine flow detours, as shown in Fig. 1.

B. Measurement Module Design & Implementation

OpenFlow pushes forwarding decisions onto a logically
centralized controller, which can in turn add and remove for­
warding entries in OpenFlow switches. This form of network
virtualization abstracts complexity from hardware to controller
software, allowing control logic to be defined and programmed
in software. Each OpenFlow switch matches incoming flows

978-1-4799-3755-4/13/$31.00 ©2013 IEEE

Open Flow Output Port Lookup

Fig. 2: Design of the link utilization module within the OpenFlow
switch pipeline.

using exact-match or wildcards on specific protocol fields. If
a match is not found for an arriving packet, the packet is sent
to the controller which registers the new flow and decides on
the action(s) that should be applied to all subsequent packets
matching the same filter. The action is then sent to the switch
and cached as an entry in the switch's flow table. Subsequent
packets belonging to the same flow are then directly forwarded
at line-rate through the switch without the need for redirection
to the controller.

We have implemented a hardware-based link measurement
module in-line with NetFPGA's OpenFlow switch implemen­
tation [17], as illustrated in Fig. 2. As soon as a packet arrives
at the input port, the link utilization module adds the size of
the packet to the overall bytes arriving on the specific link.
Similarly, after the packet is processed by the output port
lookup, its size will be added to the total for the outgoing
link. After a specified time interval the link utilization will be
calculated.

C. Baatdaat Scheduling

Intuitively, the scheduling loop should be short enough
to capture all flow interarrivals. In this case, centralized
schedulers that decide which path to pin a flow on may be
hard pressed to keep up and may generate high control traffic
overhead. While it is reported that flow inter-arrivals per switch
port can be as long as 10-15 ms for Cloud DCs, we set
our measurement loop to run every 1 ms by default with an
aim to capture instantaneous traffic bursts. The measurement
results are stored locally as an array of size equivalent to
the number of ports in the switch. Baatdaat is a flow-based
scheduler that uses 5-tuple header hashing to guarantee packets
belonging to the same flow traverse the same path, so that
packet re-ordering is avoided. Hence, when a new flow joins,
the switch first queries the number of outgoing ports, such as
output ports for multiple shortest paths, and then places the
flow onto the least utilized link by comparing their measured
link utilization. When all outgoing links are reported to have
the same utilization, such as all links are 0% utilization right
after initialization, the flow is then randomly scheduled using
commodity ECMP. Aggregation switches, however, need to
report statistics to the controller, which will determine whether
or not the new flow should take a detour.

To make the scheduling manageable, we impose three
constraints on any flow taking a detour: 1) the flow is downlink
traffic from the aggregation switches. This means detours

000767

only happen between the aggregation and the Top-of-Rack
(ToR) layers of the DC topology. In DCs, cross-aggregation­
switch traffic is more common than cross core switch due
to the traffic locality nature of DC networks. The multi­
root tree architecture provides large amounts of interconnect
between aggregation and ToR layers, up to a full mesh in
a fat-tree topology. This offers significant path diversity if
detour is allowed; 2) the link utilization of shortest paths is
?:30%. Without a threshold value, Baatdaat would schedule
traffic on longer paths even when shortest paths are lightly
utilized. However, if the threshold is ?:50%, the detour scheme
sometimes does not come into effect before shortest paths
become substantially congested; 3) the flow can only take
a detour of 2 hops longer than the shortest path to prevent
oscillation and flooding-like effects in the network.

While each switch keeps link utilization values locally in
the form of an array, the controller maintains a link utilization
matrix, M. Only aggregation switches send and update link
utilization of their associated links to the OpenFlow controller.
Assuming M is a mxn matrix, m denotes the number of ag­
gregation switches in a pod, while n is the number of downlink
ports on an aggregation switch. For ease of presentation, we
assume switches and their ports are sequentially numbered.
For example, Mij is the link utilization of port j of switch i.
By allowing the detour, path diversity in the fat tree network
increases by kj2 x (kj2 - 1) x (kj2 - 2) compared to the
original shortest path scheme which provides a path diversity
of kj2. The link utilization of detour paths is defined as
max (detour links) x c, where c is a weighting factor to reflect
the fact that it is a longer path. In our simulation we found
that c = 1.5 works well as it gives good detour opportunity.
We set c > 1 to bias longer paths, but setting c ?: 2 will see
significant decrease in detour opportunities. The next question
is, how does the controller determine detour paths? Clearly,
since detour paths are limited to being no more than two hops
longer than shortest paths and only happen in the aggregation­
ToR layer, so starting from any aggregation switch, any detour
of 2 more hops will lead to a path of 4 hops. Hence, the
algorithm starts by constructing an acyclic tree of depth 3 as
shown in Fig. 3, with k switches as vertices and links among
them as edges. Depth-first search is then applied to identify
and compute link utilization along the path. The OpenFlow
controller, after determining a detour path for a new flow,
installs the OpenFiow entry to all affected switches.

Clearly, the time complexity of this search is O((kj2-1)2)
for a fat-tree topology although the search tree has a depth
of 3. For a k-ary fat-tree, there are kj2 aggregation and
ToR switches in a pod, respectively. In the example given in
Fig. 3 we can see that the sequence for a detour path is: (ToR
switch linkl aggregation switch link2 ToR link3 aggregation
switch link4 ToR). As link 1 is independently chosen by the
ToR switch itself, link 2 - link 3 - link 4 is the actual
detour determined by the controller. Therefore, starting from
an aggregation switch, due to the dense interconnected nature
of each pod, it has kj2 links to ToR switches including the
source node. But the source ToR switch has to be excluded
to prevent a loop, so the algorithm only needs to search for
(and to compute link utilization of) kj2 - 1 links at the first

978-1-4799-3755-4/13/$31.00 ©2013 IEEE

�
�

Additional

Shortest Paths Detour Paths

4-1-5 4-1-6-2-5

4-2-5 4-1-6-3-5

4-3-5 4-2-6-1-5

4-2-6-3-5

4-3-6-1-5

4-3-6-2-5

�i6 �26 �36
2 3 1 3 1 2

5 5 5 5 5 5

4

Fig. 3: Example of a calculated detour in a pod, assuming a flow is
to be forwarded from node 4 to node 5.

iteration (depth 1) for link 1. Similarly, there are kj2 - 1
iterations each at the depth 2 for link 3. The complexity
so far is O((kj2 - 1)2). However, for link 4, due to the
mesh interconnect of aggregation-ToR switches, the next hop
must contain the destination node. Hence, the algorithm does
not need to search any further and the overall complexity is
O((kj2 -1)2).

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of Baatdaat
with respect to reduced network-wide maximum link utiliza­
tion and improved load-balancing due to path diversity. In
order to test the properties of our system at scale, we have
used the ns-3 network simulator for network-wide properties,
and our hardware-assisted testbed implementation to evaluate
the footprint of the time-critical processing elements.

A. Simulation Setup

We have simulated a k = 8 fat-tree topology (128 servers
grouped into 8 pods with 8 switches each) with IGb/s inter­
connect links and the OpenFiow module enabled. Simulated
flows consist of uniformly chosen 4 KB, 8 KB, and 100 KB
flows, to include the range of latency-sensitive flows COlmnon
in DC networks. The traffic is generated by sending these
uniform flows to 100 other servers at different racks to create
high and imbalanced network load.

B. Network-wide Experimental Results

Fig. 4 shows the measured Maximum Link Utilization
(MLU) for 4 KB, 8 KB and 100 KB flows for ECMP and
Baatdaat approaches, respectively. The results demonstrate
that Baatdaat consistently outperforms ECMP for all types
of flows by up to 18%, which is almost the amount by which
ECMP deviates from optimal (15%-20%) under high load [8].

Looking more closely into the CDFs, the improvement for
4 KB flows is more uniform between the 30% - 70% of the
MLU region. Interestingly, for 8 KB flows, the improvement
is more significant around the 60% MLU region, and the

000768

LL

o
o

0.4

0.2

LL

o
o

0.4

0.2

LL 0.6
o
o

0.4

0.2
"

"

"

"

....

....

..... -

...

.'

.� ...

.

..

"".""

.-'

.. '

�o 40 60 SO 100 �o 40 60 SO 100 %�--�20���40�� 6� 0--�S70--�100
Maximum Link Utilization (%) Maximum Link Utilization (%) Maximum Link Utilization (%)

(a) (b) (e)

Fig. 4: COF of maximum link utilization for 4 KB, 8 KB and 100 KB flows respectively.

1 r-::
-

,

-

-

I-Saatdaat

---Ecmp

......

-

........ _---

-

-

O.S /.
LL 0.6
o
o

0.4

0.2

-Baatdaat

--·ECMP

0.2

%����1�0--�1�5--�20��25��30
Flow Completion Time (ms)

%�--�1�0----�20�--�30�--�40
Flow Completion Time (ms)

%�--�270----�4�0----�60�--�SO
Flow Completion Time (ms)

(a) (b) (e)

Fig. 5: COF of flow completion time for 4 KB, 8 KB and 100 KB flows respectively.

improvement for 100 KB flows is more visible around the 70%
MLU region, which demonstrates that the detour approach
efficiently mitigates the increased congestion by offtoading
some flows onto less congested albeit longer paths. This is
an important feature since it offers an additional 10-18%
headroom to DC providers using short-term TE to avoid
resource outages due to temporal increases in traffic.

Since DC RTTs can be as low as 250f.Ls [4], can a detour of
two more hops degrade individual flow completion time? We
show the flow completion times for 4 KB, 8 KB and 100 KB
flows for ECMP and Baatdaat, respectively, in Fig. 5a, 5b, and
5c. While most traffic flows complete within 1 ms for 4 KB,
3ms for 8 KB and 10 ms for 100 KB flows, we can also see
that Baatdaat can significantly improve flow completion time,
particularly between the 60th - 100th percentile. Obviously,
this result demonstrates that allowing detour not only does not
deteriorate but rather it improves flow completion time. ECMP
is slightly better than Baatdaat in the 30th percentile, due to
small flows being more latency sensitive, and detour adding a
little extra (:s; 1 ms) transmission time. However, we can see in
the 70th - 100th percentile, at least 10% flows complete faster
in Baatdaat than they do in ECMP. Allowing larger number
of flows to complete faster is an important feature for data
center networks because many Web applications that run over
these topologies require strict deadlines [4].

C. Hardware Module Peiformance

We have evaluated the impact of the real-time hardware
measurement module on the NetFPGA's packet switching
performance using a back-to-back high-speed throughput test.
Two host machines connected via a NetFPGA switch ex­
changed data at full 1 Gb/s NIC speed. The NetFPGA switch

978-1-4799-3755-4/13/$31.00 ©2013 IEEE

� b 1', ODrs • d' " ..

50 100 150 200

Index
Fig. 6: Throughput ratio of instrumented (monitoring) system over
plain switch.

monitors traffic (byte counts) on its input interfaces and then
passes packets onto the appropriate output interface. We have
compared the NetFPGA's forwarding efficiency to examine
whether enabling line-rate monitoring would impact the hard­
ware's forwarding efficiency. Fig. 6 shows the throughput ratio
of the instrumented system (with monitoring functionality)
over that of a plain switch. It is evident that the in-line traffic
monitoring implementation incurs no significant deterioration
on the router's forwarding efficiency, since the throughput
ratios are mostly in the range between 0.99 and 1. This implies
that including real-time network monitoring in the routing
protocol algorithm can be seamlessly accommodated using
commodity and inexpensive hardware acceleration.

V. RELATED WORK

Traffic Engineering and routing techniques have been
widely used for Internet topologies [18], [19], [20]. However,
they do not achieve optimal routing or are often based on

000769

steady or highly predictable traffic, something that constitutes
them unsuitable for DC networks.

With the increasing use of Cloud computing over DC infras­
tructures, new routing schemes have been developed to exploit
their highly-connected nature. Fat-tree, the most dominant
topology in DCs today, typically employs ECMP [6] to balance
traffic load amongst redundant shortest paths. However, ECMP
suffers from hash collisions, which can result in an imbalance
of flow allocations across paths. VL2 [7] is a virtual layer 2
infrastructure which uses Valiant Load Balancing (VLB) to
randomize packet forwarding, and essentially exhibits similar
limitations to those of ECMP [3].

Hedera [3] complements ECMP by identifying large flows
exceeding 100 Mb/s via monitoring of throughput at network
edge switches and then scheduling these flows along a re­
dundant path with suitable capacity. However, this approach
becomes limited as network utilization increases and flows
fair-share the bottleneck bandwidth. On the contrary, our work
attempts to place flows based on minimum link utilization and
independent of flow size. PEFT uses a mix of shortest and
non-shortest paths with exponential penalisation on the latter
[15]. It has been shown to achieve optimal routing for Internet
networks with decisions made on a hop-by-hop basis, but it
is designed for offline traffic engineering over ISP topologies
with predictable traffic matrices, not the highly unpredictable
DC traffic characteristics that occur even over long timescales.
DeTail [4] attempts to reduce flow completion time in DC
networks for web site load times by using flow priorities and
switch port buffer occupancies to determine next hop behavior.
However, DeTail requires major changes at several layers
of the networking stack, and applications must be modified
to communicate flow priorities for latency-sensitive traffic
scheduling. Baatdaat is much simpler to deploy, requiring
no in-depth knowledge of individual application flows, yet
still significantly reducing flow completion time in congested
networks. MicroTE [8] uses short-term traffic patterns and
partial predictability to achieve its goals. However, with highly
unpredictable DC traffic, it becomes equivalent to or worse
than ECMP, and requires significant changes to end hosts as
traffic monitoring duties are pushed to servers.

VI. CONCLUSION

In this paper we have presented Baatdaat, a novel flow
scheduling system for DC networks. Baatdaat uses a modified
NetFPGA implementation of OpenFlow to directly measure
the temporal, network-wide utilization of the infrastructure and
to subsequently schedule flows over redundant lightly-utilized
and non-shortest paths. Unlike existing flow scheduling algo­
rithms, Baatdaat takes into consideration the current state of
the network and dynamically adapts scheduling to make use of
local link utilization information available at each switch, and
improves network performance on a global scale. Moreover,
it can be readily deployed in DCs already running OpenFlow­
enabled switches.

978-1-4799-3755-4/13/$31.00 ©2013 IEEE

6

Simulation results have shown that Baatdaat can sub­
stantially improve flow completion time in the presence of
congestion, and achieves close to optimal Traffic Engineering
through reducing network-wide utilization by up to 18% over
ECMP. Results on the NetFPGA platform demonstrate that
traffic monitoring and real-time flow-level scheduling can
be seamlessly incorporated into appropriately instrumented
switches without impacting their forwarding performance.

REFERENCES

[1] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, "The cost of a
cloud: Research problems in data center networks," ACM SIGCOMM
Computer Communication Review, vol. 39, no. 1, January 2009.

[2] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, "The
nature of data center traffic: measurements & analysis," in Proc. ACM
SIGCOMM Internet Measurement Conference (IMC'09), 2009, pp. 202-
208.

[3] M. AI-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
"Hedera: Dynamic flow scheduling for data center networks," The 7th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 'JOY, 2010.

[4] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz, "DeTail: reducing
the flow completion time tail in datacenter networks;' ACM SIGCOMM,
2012.

[5] T. Benson, A. Akella, and D. Maltz, "Network traffic characteristics
of data centers in the wild," Internet Measurement Conference (1M C),
2010.

[6] c. Hopps, "Analysis of an equal-cost mUlti-path algorithm," RFC 2992,
IETF,2000.

[7] A. Greenberg, J. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A.
Maltz, P. Patel, and S. Sengupta, "VL2: A scalable and flexible data
center network," ACM SIGCOMM, 2009.

[8] T. Benson, A. Anand, A. Akella, and M. Zhang, "MicroTE: Fine grained
traffic engineering for data centers," ACM CoNEXT, 2011.

[9] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, "OpenFlow: enabling innovation
in campus networks," SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
2008.

[l0] IBM RackSwitch G8264 & G8264T
http://www-03.ibm.comJsystems!networking!switches! rack! g8264!.

[11] "NEC ProgrammableFlow networking," http://www.necam.comJPFlow!.
[l2] NetFPGA, ''http://www.netfpga.orgl.''
[13] T. Benson, A. Akella, and D. A. Maltz, "Network traffic characteristics

of data centers in the wild," in Proc. ACM SIGCOMM Internet Mea­
surement Con! (IMC'10), 2010, pp. 267-280.

[14] S. Even, A. Itai, and A. Shamir, "On the complexity of timetable
and multicommodity flow problems," Proceedings of the 16th Annual
Symposium on Foundations of Computer Science, no. 184-193, 1975.

[15] D. Xu, M. Chiang, and J. Rexford, "Link-state routing with hop-by­
hop forwarding can achieve optimal traffic engineering," IEEE!ACM
Transactions on Networking, April 2011.

[16] F. P. Tso and D. P. Pezaros, "Improving data centre network utilisation
using near-optimal traffic engineering," IEEE Transactions on Parallel
and Distributed Systems.

[17] J. Naous, D. Erickson, G. A. Covington, G. Appenzeller, and
N. McKeown, "Implementing an open flow switch on the netfpga
platform," in Proceedings of the 4th ACM!IEEE Symposium on
Architectures for Networking and Communications Systems, ser. ANCS
'08. New York, NY, USA: ACM, 2008, pp. 1-9. [Online]. Available:
http://doi.acm.orgllO.114511477942.1477944

[l8] A. Elwalid, C. Jin, S. Low, and l. Widjaja, "Mate: Mpls adaptive traffic
engineering," IEEE INFO COM, 2001.

[19] H. Wang, H. Xie, L. Qiu, R. Yang, Y. Zhang, and A. Greenberg, "Cope:
Traffic engineering in dynamic networks," ACM SIGCOMM, 2006.

[20] S. Kandula, D. Katabi, B. Davie, and A. Charny, "Walking the tightrope:
Responsive yet stable traffic engineering," ACM SIGCOMM, 2005.

000770

