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Abstract—Data Centers (DC) used to support Cloud services
often consist of tens of thousands of networked machines under
a single roof. The significant capital outlay required to replicate
such infrastructures constitutes a major obstacle to practical
implementation and evaluation of research in this domain.
Currently, most research into Cloud computing relies on either
limited software simulation, or the use of a testbed environments
with a handful of machines. The recent introduction of the
Raspberry Pi, a low-cost, low-power single-board computer, has
made the construction of a miniature Cloud DCs more affordable.

In this paper, we present the Glasgow Raspberry Pi Cloud
(PiCloud), a scale model of a DC composed of clusters of
Raspberry Pi devices. The PiCloud emulates every layer of a
Cloud stack, ranging from resource virtualisation to network
behaviour, providing a full-featured Cloud Computing research
and educational environment.

I. INTRODUCTION

Cloud Computing is emerging as a new processing paradigm

based on outsourcing infrastructure on a “pay-as-you-go”

basis, accommodating services ranging from private data pro-

cessing to public website hosting. Despite much attention

from the research community, research and development of

Cloud Computing systems, applications, services and resource

management are still in their infancy.
There are a number of important issues that need detailed

investigation throughout the Cloud “stack”. For example,

topics of interest to Cloud providers include: economic strate-

gies for provisioning virtualised resources to incoming user

requests, application scheduling, and resource discovery. The

extent to which most researchers can adequately address such

problems is limited by the inaccessibility of Data Centre (DC)

infrastructures for cost-effective large-scale experimentation.

It is therefore important that suitable tools for exploring and

evaluating ideas are made available to researchers.
A typical Cloud DC usually contains tens of thousands

of servers [1], making it prohibitively expensive for an ed-

ucational or research institution to construct one. Even a

practical testbed consisting of a reasonable number of servers

(say, 40 machines) can still be out of the reach of most

researchers when one needs to consider space, power and

cooling infrastructure.
Some researchers have instead focused on developing Cloud

Computing simulators. While simulation has in the past been

used to successfully model some of the underlying state of a

target system (such as within network simulation), it fails to

capture essential Cloud Computing properties in a number of

ways.

Traffic patterns in operational Cloud DC networks con-

stantly change over time and are generally unpredictable [2],

[3] in the long term. The realism of simulated traffic patterns

is questionable, since traffic dynamism is difficult to model.

Obtaining realistic DC traffic pattern statistics is of paramount

importance, as it can have a crucial impact on server and

network utilisation, which ultimately drives Cloud service

management.

Often, we also find that simulation does not model cross-

layer (e.g., application, network, virtualisation) correlations

and interaction. For example, iCanCloud [4] is a simulator

of Cloud infrastructures aimed at simulating instance types

provided by Amazon without considering the underlying net-

work behaviour. A more sophisticated and extensible simu-

lator, CloudSim [5], supports the modelling of essential DC

resources such as virtualisation and network layers. However,

it does not model popular Cloud applications, such as data

mining or web services. Furthermore, its constrained devel-

opment environment usually requires extensively tweaking

existing models, and the resulting software packages cannot

be readily ported to an operational environment.

With Cloud simulation tools being still at early development

and physical x86 Cloud testbeds being prohibitively expensive,

we are exploring a novel alternative: the construction of a

cutting-edge “scale model” of a Cloud system to create a high

fidelity and affordable testbed. To the best of our knowledge,

we have built the first cost-effective scale model of a Cloud DC

– the Glasgow Raspberry Pi Cloud (PiCloud) – composed of

56 Raspberry Pi devices. Following a typical densely intercon-

nected network topology, the PiCloud can accurately replicate

a Cloud DC’s functionalities with scaled components. As a

development environment, it permits reproduction of actual

traffic patterns with realistic Cloud applications. Applications

and technologies developed on top of the PiCloud can be

readily adapted to real Cloud environments.

We believe that scale modelling of Cloud computing ser-

vices with ARM-based devices is an important line of research

that has yet to be exploited by the research community. We

trust CCRM will be an ideal forum to elaborate on and

promote this approach.

II. SYSTEM DESIGN

In this section we discuss design and implementation of the

PiCloud, highlighting the rationale as well as the operational

and design details of the individual components.
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Fig. 1: Four PiCloud racks

Fig. 2: System architecture

A. System Architecture

We have constructed a prototype scale model of a Cloud

Data Centre (DC) cluster, called the Glasgow Raspberry Pi

Cloud (abbreviated to PiCloud). It contains 56 Model B ver-

sion Raspberry Pi devices, housed in racks constructed using

Lego bricks, as shown in Fig. 1. The system’s architecture is

shown in Fig. 2. The 56 Raspberry Pi’s are divided into 4

racks with 14 Raspberry Pis each.

In order to reflect a typical DC network architecture, the

Raspberry Pi devices are interconnected through a canonical

multi-root tree topology. Machines in the same rack are

connected to the same Top of Rack (ToR) switch, which in

turn connect to the rest of the topology through an OpenFlow-

enabled aggregation switch. The benefit of using OpenFlow is

to make the topology fully programmable and compatible with

the leading-edge Software Define Networking (SDN) research.

SDN is a fairly recent concept of logically centralising the

network’s control plane so that network-wide management can

be programmed in software and subsequently enforced through

the centrally-controlled installation of rules on the switches

along the path. All Raspberry Pi devices are eventually con-

nected to the Internet through the School’s university gateway,
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Fig. 3: PiCloud software stack

which functions as a core or border router. The accessibility

and design of the prototype means the PiCloud clusters can

easily be re-cabled to form a fat-tree topology.

As the key building blocks of the PiCloud, each of these

microcomputers runs Linux from a Sandisk 16GB SD card

storage, supporting up to 3 co-located concurrent virtualised

hosts with isolated filesystems, which are realised through

Linux Containers and the supporting LXC suite. There is an

API daemon on each Pi providing a RESTful management in-

terface for facilitating virtual host management and interacting

with a head node (the pimaster). A system administrator can

implement customised IP and naming policies through DHCP

and DNS services running on the pimaster, which also hosts

image management tools providing image upgrading, patching,

and spawning.

While our system architecture replicates the overall structure

of a Cloud DC, we believe that the emulation at an individual

server level is equally important. The software stack for

an individual Pi is shown in Fig 3. Thanks to the effort

of the Raspberry Pi community, there is a distribution of

Debian optimised for the Raspberry Pi hardware known as

Raspbian [6]. Unlike other ARM-based operating systems

which usually contain only a subset of basic programs and

utilities, the Raspbian comes with over 35,000 pre-compiled

software packages, built with support for the Pi’s hardware

floating point capabilities.

Immediately above the Raspbian operating system, Linux

Containers are used to provide a type of virtualisation, playing

a role similar to the hypervisor in x86 virtualisation technolo-

gies. Coupled with the LXC toolset, the libvirt [7] library and

some other customized APIs are used to facilitate resource

management through interaction with pimaster. On top of

the management layer are the virtual hosts. Currently, we

are able to comfortably support three containers concurrently

on a Raspberry Pi. Within each of the containers, any user

application can be executed as if it was running on normal

servers.

B. System Virtualisation

Given that resource virtualisation is one of the key enabling

technologies for Cloud computing, it is imperative that the

PiCloud can suitably emulate certain levels of system virtual-

isation. Hardware virtualisation architectures such as Xen and
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VMWare are used to create virtual hosts that observe shared

hardware as if they solely own them; these technologies are the

most prevalent virtualisation tools in use today. However, there

are obstacles to running the same software on the PiCloud:

full virtualisation technologies such as Xen are memory-

intensive when compared to the 256MB RAM capacity of the

original Raspberry Pi devices. In addition, many CPUs provide

architectural support for virtualisation in order to efficiently

isolate the guest operating systems. This support is usually

provided by x86 processors, and while there is an ongoing

effort trying to enable Xen on the ARM platform [8], this

project is still under development at the time of writing.

As an alternative, we use a lightweight operating system-

level virtualisation method for running multiple isolated

servers on a single control host – the Linux Container, which

is supported by the Linux kernel’s CGROUPS functionality.

Linux containers do not provide a full virtual machine, but

rather a virtual environment that has its own process and

network space; they are informally referred to as an enhanced

version of “chroot”. Linux Containers are a simple yet efficient

solution for resource-constrained systems, although they do

not yet provide the level of isolation that full virtualisation

achieves. For example, we can run three containers on a single

Pi, each consuming 30MB RAM when idle. In terms of net-

work virtualisation, we can easily provide native networking

to each container by bridging or NATing the virtual hosts to

the physical network, allowing them to communicate over the

DC infrastructure.

C. Management API

The LXC package provides a set of tools that can be used

to control Linux Containers, using functionality provided by

the Linux kernel. For example, the script lxc-start spawns

a container. Above these basic tools, a management layer is

needed to administer the PiCloud. We intend to adapt the

libvirt framework, however this is currently not fully functional

on the Pi platform (without significant workarounds). Instead,

for the moment we rely upon a bespoke administration API

supported by daemons on the pimaster and on individual Pi

devices. An outward-facing webserver on pimaster provides a

web-based control panel to users and administrators as shown

in Fig 4. This website interacts with the local daemons, and

controls workloads running on the Pi devices using RESTful

interfaces. Typical use-case scenarios include remote monitor-

ing of the CPU load on some/all Pi nodes, spawning new VM

instances and specifying (soft) per-VM resource utilisation

limits.

III. RESEARCH DIRECTIONS

The PiCloud enables us to conduct research on any aspect

of Cloud Computing and unified ICT with a level of fidelity

and confidence that would otherwise be beyond our reach. In

this section, we provide some examples of research directions

for our work on the PiCloud so far.

Virtual Machine (VM) management is an important aspect

of Cloud Computing, since it allows for consolidation to

reduce power consumption, and oversubscription to improve

Fig. 4: PiCloud management web interface on pimaster node

cost efficiency. The way in which VMs are allocated is crucial;

we can experiment with new algorithms on the PiCloud,

while directly observing the resulting behaviour on all layers

of the Cloud architecture. Similarly, by operating an actual

infrastructure, we can empirically evaluate improvements to

file management and migration techniques. Whilst such tasks

could also be carried out in a simulator, the PiCloud allows us

to consider the impact of changes on all aspects of operation

and on all layers of the infrastructure. By not isolating any

single aspect and by not employing over-simplifying assump-

tions, we can observe the interactions as well as the effects of

specific optimisations on all different layers, something that

gives us confidence in the feasibility of any new approach by

demonstrating that it works, at least in miniature.

In terms of network management, we can examine ways of

reducing congestion through improved resource allocation, as

well as looking at novel network architectures and technolo-

gies that require significant changes to the infrastructure. For

example, we are researching IP-less routing in order to support

more flexible and efficient migration. This is a good example

of designing synergistic optimisation between different control

loops of the Cloud (i.e., networking and virtualisation) that to

date operate mostly in isolation.

As with a real DC, the PiCloud requires administration.

Thus, we are forced to deal with the mundane yet crucial

aspects of image management, API design, UI design etc.,

that may otherwise be forgotten. We are experimenting with

new UIs for control of the Cloud, and the flexibility of owning

our own testbed allows us to consider radical departures to the

norm, such as a peer-to-peer Cloud management system.

One potential scenario in the future development of Cloud

Computing is the removal of virtualisation. This could be in

terms of switching to lighter mechanisms, such as the Linux

Containers used in the PiCloud, or else removing virtualisation

completely and renting out physical nodes rather than virtual

ones. Such a ‘fine-grained’ approach to Cloud Computing

would be well-supported by smaller, power-efficient proces-
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sors - such as the ARMv6 ISA chips found on the Pi. The

PiCloud gives us a platform to examine the potential of this

idea at an early stage.

When considering power efficiency, it is difficult to pro-

vide accurate power consumption data through simulation or

other ‘closed’ evaluation platforms. The PiCloud allows us

to both isolate individual components to measure their power

consumption characteristics, or instrument directly across the

whole Cloud: we can run the PiCloud from a single trailing

power socket board.

IV. DISCUSSION

Why the Raspberry Pi? The Raspberry Pi project [9] has

great potential to revolutionise Computer Science education

and is currently garnering support from industry and the educa-

tion sector, as well as widespread media coverage. The project

and the resulting infrastructure enable Computing Science

students not only to use-case ICT but also to get hands-

on experience on building and programming full distributed

systems. To further this goal, the Pi is available for as little as

$25. The machines are currently available in Model A & B,

featuring small differences in RAM size and number of I/O

ports. These machines, however, share many of the properties

of Cloud-based servers, such as limited storage and peripheral

capability - albeit at a smaller scale. The use of an educational

computing platform to construct a Cloud environment offers

a promising combination of learning and research.

At the same time, ARM-based architectures are currently

attracting significant attention as a cost-effective alternative

for large-scale compute environments. Even though current

versions of the Raspberry Pi have not been designed specifi-

cally for this purpose, the potential for further decreasing the

cost of individual boards makes the architecture particularly

attractive. The Bill of Materials (BoM) for the Raspberry

Pi is currently under Non-Disclosure Agreement (NDA), yet

we can try to infer it based on previous products that use

similar ARM cores and devices, such as the Allwinner A10

processor or the slightly older BeagleBone. Estimations place

the processor as the most expensive component for around

10$, followed by the cost of Printed Circuit Board (PCB),

RAM, the Ethernet connector and the rest of the components.

The Raspberry Pi is built around a BCM2835 processor that

has been primarily designed for multimedia-capable embedded

devices. The integrated peripherals of such processor include

a dual core multimedia Co-processor, HD video encoding and

decoding, image sensing pipeline, a Graphic Processing Unit

(GPU) and a video display unit [10] It becomes evident that

a significant cost for this System on Chip (SoC) can be cut

for a Data Centre-tuned ARM chip, by removing most of the

multimedia-related external peripherals while adding another

Ethernet PHY. This can be motivated by companies processing

large amounts of data that would require more servers that can

handle simple tasks than raw single unit processing power.

Due to the low power dissipation, the elimination of a north

and south bridge, and the fact that most ARM SoCs leverage

the use of their BGA pads to stack the SoC and RAM,

more processors can be fitted in a small space. Calxeda is

an example of a small start-up that expect to fit 288 quad core

cortex A9 in a 4U (redstone) server rack. In 2012, 8.7 billion

ARM processor-based chips reported as sold, representing a

32% share of the total available market [11].
What is the cost of the PiCloud? Table I illustrates the

cost breakdown for constructing a 56-machine testbed with

commodity x86 servers and Raspberry Pi devices, respectively.

The cost of the PiCloud is several orders of magnitude smaller

than that of commercial servers. If the goal is to carry out

intensive computation, then clearly the PiCloud is no substitute

for x86 boxes. However, if our goal is to replicate the architec-

ture of a Cloud DC, then the PiCloud offers a very economic

alternative. Furthermore, due to the lightweight nature of the

Raspberry Pi both in size and in power consumption, it can be

hosted without extensive physical footprint or expensive power

and cooling management, which reportedly accounts for 33%

of the total power consumption in Cloud DCs.

TABLE I: Cost breakdown of a testbed consisting 56 servers

Server Power Needs Cooling?
Testbed $112,000

(@$2,000)
10,080W/h
(@180W/h)

Yes

PiCloud $1,960 (@$35) 196W/h
(@3.5W/h)

No

Isn’t the Raspberry Pi just a “toy” device? It is true

that, while hardware capacity can be linearly scaled down

to a certain ratio (say 1:10), software cannot similarly be

scaled directly. The current version of the Raspberry Pi cannot

perform the compute-intensive operations per unit that one

may find in large-scale, x86-based DCs. We are therefore

currently limited to a subset of software (lightweight httpd

servers, hadoop etc.) at the application layer that can be used to

emulate current DC workloads. However, the hardware itself is

evolving fast and prices drop quickly. Recently, the Raspberry

Pi foundation doubled the RAM size on every Raspberry Pi

while keeping the same price. We anticipate that this trend will

continue, for example with regards to its processing power.

Furthermore, the onboard GPU can also be exploited for

general computation.
Cloud computing typically serves different needs from those

of supercomputing. Efficient Cloud DC design advocates the

use of COTS (Commodity Off-The-Shelf) servers and en-

courages distributed computation. Computation-intensive jobs

are often divided into several small tasks which are in turn

distributed over many servers. The different economic and

technical models that Intel and ARM operate, favour ARM

for the development of myriad-core compute Clouds. While

Intel’s revenue is based on semiconductor unit price, ARM

covers an increasingly expanding market based on selling

intellectual property as widely as possible. ARM’s extremely

large device base, lead to an overall license cost per device

below $0.1. At the same time, ARM processors are inherently

less expensive due to the native RISC instruction set that

allows for a simpler processor architecture. On the other hand,

Intel’s hybrid instruction set with performance optimisation

have led to an architecture with an inherently fixed transistor

cost for decoding the x86 instruction set into RISC [12]

Complete with the Raspberry Pi’s development environment,
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the PiCloud is thus not a “toy” approach but rather a cost-

effective scale model of a Cloud evironment with excellent

potential to evolve as a fully-fledged next generation custom-

compute distributed platform.

The PiCloud for resource management in Cloud Com-

puting? The virtualisation and cohabiting nature of Cloud

Computing makes dynamic resource provisioning an important

research challenge. In the layered design of service-oriented

Cloud architectures, changes to resources provided in one layer

(e.g., the VM pool) will often have ripple-effects on other

layers (e.g., network traffic dynamics). For example, imperfect

VM migration or a naive consolidation algorithm may improve

server resource usage at the expense of frequent episodes of

network congestion. Simulators focusing only on modelling

system VM instances such as iCanCloud [4] will be unable

to accurately reveal such side effects. This makes the PiCloud

particularly relevant to CCRM, since it provides a real testbed

with all the ‘murky details’ of practical DC management. With

a physical testbed such as the PiCloud, complex interactions

and conflicting requirements are not abstracted away, enabling

(or, indeed, motivating) the design of a resource manage-

ment schemes which synergistically manage resources across

different layers. We also anticipate that results from testbed

experiments can be fed back into the improvement of Cloud

simulation and modelling processes.

Furthermore, the PiCloud is SDN-ready with OpenFlow

switches forming the aggregation layer. SDN-based network

logical centralisation abstracts complexity from hardware to

controller software, allowing control logic to be dynamically

defined and programmed in software. Such a global view of

the network will enhance overall resource management for

Cloud computing, with finer granularity management policies

and more efficient policy reinforcement.

V. RELATED WORK

Building a Cloud infrastructure can costs millions of dol-

lars [1]. In order to support the research community, Yahoo,

HP and Intel have together established the Open Cirrus, a

global Cloud Computing testbed that supports a federation of

DCs located in 10 organisations [13]. Building such experi-

mental environments is expensive and still hard to access due

to its globally shared nature.

Limited accessibility to actual Cloud testbeds has made

researchers to resolve to simulated environments. Cloud Com-

puting simulators include CloudSim [5], GreenCloud [14],

iCanCloud [4] and MDCSim [15]. GreenCloud [14] is an

extension of the NS2 network simulator for evaluation of

energy-aware Cloud DCs. The main strength of GreenCloud

is the detailed modelling of communication within a DC

network. MDCSim [15] is a commercial discrete event simu-

lator that models specific hardware characteristics of different

DC components such as servers, communication links, and

switches. On the contrary, iCanCloud [4] is a hypervisor sim-

ulator specifically aimed at simulating instance types provided

by Amazon. Thus far, the only tool that can simulate an

entire Cloud stack is CloudSim [5]. However, among these

simulators, there is limited or no support for more realistic

and complex applications composed of communicating tasks

and workflows, enabling no or limited cross-layer interaction.

As a practical balance between a prohibitively expensive

testbed and limited simulation, the PiCloud offers an in-

expensive means of building a physical Cloud Computing

testbed with a full software stack and complete virtualisation

management tools.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented the design and implemen-

tation of the PiCloud, a scale model that emulates a Cloud

DC, from its overall architecture to the software stack on each

individual machine. It allows us to carry out practical research

into Cloud computing without the limitations of simulation or

the expenditure of full-size x86 testbeds.

We have built an initial 56-node PiCloud arranged in a

DC Clos network topology. Nevertheless, there are still many

issues to be addressed: Immediate effort will be focused on

adapting the libvirt framework to facilitate more secure and

generic virtual resource management. Subsequently, we will

implement sophisticated live migration within the PiCloud,

to enable the study of important Cloud resource management

aspects in depth.
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