
PLAN: A Policy-Aware VM Management Scheme for Cloud Data Centres

Lin Cui∗, Fung Po Tso†, Dimitrios P. Pezaros‡, Weijia Jia§
∗Department of Computer Science, Jinan University, Guangzhou, China

†School of Computing & Mathematical Science, Liverpool John Moores University, L3 3AF, UK
‡School of Computing Science, University of Glasgow, G12 8QQ, UK

§Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai China
Email: tcuilin@jnu.edu.cn; p.tso@ljmu.ac.uk; dimitrios.pezaros@glasgow.ac.uk; jia-wj@cs.sjtu.edu.cn;

Abstract—Policies play an important role in network config-
uration and therefore in offering secure and high performance
services especially over multi-tenant Cloud Data Center (DC)
environments. At the same time, elastic resource provisioning
through virtualization often disregards policy requirements,
assuming that the policy implementation is handled by the
underlying network infrastructure. This can result in policy
violations, performance degradation and security vulnerabili-
ties.

In this paper, we define PLAN, a PoLicy-Aware and
Network-aware VM management scheme to jointly consider
DC communication cost reduction through Virtual Machine
(VM) migration while meeting network policy requirements.
We show that the problem is NP-hard and derive an efficient
approximate algorithm to reduce communication cost while
adhering to policy constraints. Through extensive evaluation,
we show that PLAN can reduce topology-wide communication
cost by 38% over diverse aggregate traffic and configuration
policies.

Keywords-Data center networks; virtual machine; migration;
policies; middleboxes;

I. INTRODUCTION

Network configuration and management is a complex task
often overlooked by research that focuses on improving
resource usage efficiency. However, providing secure and
balanced distributed services while maintaining high ap-
plication performance is a major challenge for providers.
In Cloud Data Centers (DC)s in particular, this challenge
is amplified by the collocation of diverse services over a
centralized infrastructure, as well as by virtualization that
decouples services from the physical hosting platforms. Ap-
plications over DC networks have complex communication
patterns which are governed by a collection of network
policies regarding security and performance. In order to
implement these policies, network operators typically deploy
a diverse range of network appliances or “middleboxes”,
including firewalls, traffic shapers, load balancers, Intrusion
Detection and Prevention Systems (IDS/IPS), and appli-
cation enhancement boxes [1]. Across all network sizes,
the number of middleboxes is on par with the number of
routers in a network, hence such deployments are large and
require high up-front investment in hardware on the order
of thousands to millions of dollars [2][3].

Network policies demand traffic to traverse a sequence of
specified middleboxes. As a result, network administrators
are often required to manually install middleboxes in the data
path of end points or significantly alter network partition and
carefully craft routing in order to meet policy requirements.
There is a consequent lack of flexibility that makes DC
networks prone to misconfiguration, and it is no coincidence
that there is emerging evidence demonstrating that up to 78%
of DC downtime is caused by misconfiguration [2] [4].

On the other hand, Cloud applications can be rapidly
deployed or scaled on-demand, fully exploiting resource
virtualization. Consolidation is the most common technique
used for reducing the number of servers on which VMs
are hosted to improve server-side resource fragmentation,
and is typically achieved through VM migration. When a
VM migrates, it retains its IP address, and the standard 5-
tuple (source and destination addresses, source and desti-
nation ports, protocol) used to describe a flow remain the
same. This implies that migrating a VM from one server
to another will inevitably alter the end-to-end traffic flow
paths requiring subsequent dynamic change or update of the
affected policy requirements [5]. Clearly, change of the point
of network attachment as a result of VM migrations sub-
stantially increases the risk of breaking predefined sequence
of middlebox traversals and lead to violations of policy
requirements. It has been demonstrated in PACE [1] that
deployment of applications in Cloud DC without considering
network policies may lead to up to 91% policy violations.

It is common in DCs that an application involving mul-
tiple VMs (e.g., indexing, document, web, etc.) is hosted
in non-collocated servers. The underlying traffic flows need
to traverse distinct firewalls and IPSes that are attached to
different switches and routers, making the true end-to-end
paths longer than shortest paths due to middlebox traversals
(see Fig. 1). Therefore, when deciding where to migrate
any one of these VMs, locations of these middleboxes have
to be taken into considerations. Failing to do so, will not
only lead to sub-optimal performance due to much longer
middlebox traversal paths, but also cause service disruption
and unreachability as a result of being unable to follow a
predefined sequence of middlebox traversal rules. However,

to date, network policy and VM management are treated
disjointly. PACE [1] is the only work that jointly considers
middlebox traversal and VM placement in a Cloud DC
environment, however it only considers static placement and
does not provide any reliable mechanisms to facilitate subse-
quent dynamic VM migration. In contrast, our initial effort
has shown that policy-aware dynamic VM consolidation can
remarkably improve network utilization [6].

Besides PACE, existing proposals that aim to dynamically
manage network policies can be broadly classified into the
following two categories, both of which fail to address the
aforementioned problem.

• Virtualization and Consolidation: Software-centric
middlebox applications have been proposed to separate
policy from reachability (i.e., virtualization) [3][4] and
middlebox functions can be consolidated [3] dynami-
cally. But consolidation of middleboxes may not always
be feasible, as different capabilities (e.g., proxy, fire-
wall) arse provided by separate hardware middleboxes.
Furthermore, if not dealt with carefully when migrating
VMs, middlebox consolidation can put VMs on the
risk of policy violation. In addition, the requirement
for high-speed, often hardware-accelerated operation,
as well as the need for in-network deployment, does
not currently allow for a fully virtualized policy imple-
mentation [7].

• SDN-based policy enforcement: Software-Defined Net-
working (SDN) [8] has enabled a new paradigm for
enforcing middlebox policies [7][9][10][11]. SDN ab-
stracts a logically centralized global view of the net-
work and can be exploited to programmatically ensure
correctness of middlebox traversal. Some simple mid-
dlebox functions (e.g., NAT, load balancers) are im-
plemented directly in (SDN) switches to ensure speed
and flexibility, but these switches have limited on-board
memory to store a potentially very large number of
forwarding rules. Moreover, SDN cannot solely make
flow decisions to adhere to policies, specially when
VMs migrate.

In this paper, we explore the policy-aware VMs migra-
tion problem, and present an efficient PoLicy-Aware VM
maNagement (PLAN) scheme, which, (a) adheres to policy
requirements, and (b) reduces network-wide communication
cost in DC networks. The communication cost is defined
with respect to policies associated to each VM. In order to at-
tain both goals, we model the utility (i.e., the reduction ratio
of communication cost) of VM migration under middlebox
traversal requirements and aim to maximize it during each
migration decision. To the best of our knowledge, this is the
first joint study on policy-aware performance optimization
through elastic VM management in DC networks.

The contributions of this paper are three-fold:

1) The formulation of the policy-aware VM management

problem (PLAN), the first study that jointly considers
policy-aware VM migration and performance optimiza-
tion in DC networks;

2) An efficient distributed algorithm to optimize network
communication cost and guarantee network policy com-
pliance;

3) An extensive performance evaluation demonstrating
that PLAN can effectively reduce communication cost
while meeting policy requirements.

The remainder of this paper is organized as follows.
Section II describes the model of policy-aware VM man-
agement (PLAN), and defines the communication cost and
utility for VM migration. An efficient, distributed algorithm
and implementation are proposed in Section III. Section IV
evaluates the performance of PLAN. Section V outlines
related work on VM migration and policy implementations.
Finally, Section VI concludes the paper.

II. PROBLEM MODELING

A. Motivating Example

We describe a common DC Web service application as an
example to demonstrate that migrating VMs without policy-
awareness will lead to unexpected results and application
performance degradation.

1) Topology and Application: Fig. 1 depicts a typical Fat-
tree DC network topology [12] that consists of a number of
network switches and several distinct types of middleboxes.
Firewall F1 will filter unwanted or malicious traffic and
protect tenants’ networks in the DC from the Internet.
Intrusion Prevention Systems (IPS), e.g., IPS1 and IPS2,
are configured with a ruleset, monitoring the network for
malicious activity, and subsequently log and block/stop it.
They also provide a detailed view and checking of how
well each middlebox is performing for the traffic flow. A
Load Balancer, e.g., LB1, provides one point of entry to the
web service, but forwards traffic flows to one or more hosts,
e.g. v1, which provide the actual service. In this example,
v1 is a web server, which accepts HTTP requests from an
Internet client (denoted by u). After receiving such requests,
v1 will query data server v2 (i.e., a database), perform some
computation based on the fetched data, and feed results back
to the client.

2) Policy Configurations: Polices are identified through a
5-tuple and a list of middleboxes (A more formal definition
is given in Section II-B). The following policies are config-
ured through the Policy Controller to govern traffic related
to the web application in this example:
• p1 = {u, LB1, ∗, 80, HTTP} → {F1, LB1}
• p2 = {u, v1, ∗, 80, HTTP} → {IPS1}
• p3 = {v1, v2, 1001, 1002, TCP} → {LB2, IPS2}
• p4 = {v2, v1, 1002, 1001, TCP} → {IPS2, LB2}
• p5 = {v1, u, 80, ∗, HTTP} → {IPS1, LB1}
• p6 = {LB1, u, 80, ∗, HTTP} → {}

Internet

CR

AS

S

CR

AS

S

v1

LB1

F1

IPS1

Networking components:

CR: Core Router

AS: Aggregate Switch

S: Edge Switch

Middleboxes:

F: Firewall

LB: Load Balance

IPS: Intrusion Prevention

System

Servers:

s1~s3

Virtual machines:

v1: Web server

v2: Data server

Flows:

Original flows

Migrated flows

Migration decisions

flow 1

flow 2

flow 3

LB2

s1 s3

v2

AS

S

AS

S

AS

S

AS

S

AS

S

AS

S

CR CR

IPS2

v2'

s2

Middlebox and

Policy Controller

Figure 1: Flows traversing different sequences of middleboxes in DC networks. Without policy-awareness, v2 will be migrated
to s1, resulting in longer paths for flow 1 and wasting network resources.

Policy p1: The Internet client first sends a HTTP request
to the public IP address of LB1. All traffic from the Internet
must traverse firewall F1, which is in charge of the first line
of defense and configured to allow only HTTP traffic.

Policy p2: LB1 will load-balance among several web
servers and change the destination to web server v1 in the
example. Traffic will need to traverse IPS1, which protects
web servers.

Policy p3, p4: v1 will communicate with a data server to
fetch the required data, which is in turn protected by IPS2.
This traffic will be forwarded to LB2 for load-balancing
first, and then reach the data server v2 after traversing IPS2.
The response traffic from v2 to v1 also needs to traverse both
IPS2 and LB2.

Policy p5, p6: Upon getting the required data from the data
server, the web server will send computed results to client.
The reply traffic is sent to LB1 first, traversing IPS1, and
then forwarded to the Internet client by LB1. Any traffic
originating from v1 and destined to an Internet client needs
no further checks, and hence does not need to traverse F1.

3) Migration Rule: The DC network is often increasingly
oversubscribed from bottom to core layers in a bid to reduce
total investment. In order to reduce congestion in the core
layers of DC network, effective VM management schemes
cluster VMs to confine traffic in lower layers of the network
such that as much traffic as possible is only routed over
the edge layer (which is not oversubscribed) [13][14]. As a
result, VMs as well as middleboxes which exchange packets
more often and intensively are collocated in order to keep
traffic within the edge layer boundaries.

Consider the migration of v2 in the above example appli-
cation. v2 was originally hosted by server s2. A large traffic

volume needs to be exchanged between web server v1 and
data server v2. This would cost precious bandwidth on core
routers. Without policy awareness, in order to consolidate
VMs on servers and keep traffic in the edge layer, v2 may
be migrated to s1 so that v1 and v2 are close to each other.
However, it will increase the route length of flow 3 and
waste more network bandwidth. This is because that all
traffic between v1 and v2 need to traverse LB2 and IPS2,
according to the policy rules (i.e., p3 and p4). Considering
policy configurations and traffic patterns in this example,
when migrating v2, it should be migrated to server s2 to
reduce the cost generated between v2 and IPS2.

Clearly, policy-aware VM migration will require finding
an optimal placement whilst satisfying network bandwidth
and policy requirements. Unless stated otherwise, our dis-
cussion and problem formulation in the rest of this paper
focus on policy-aware VM migration with an aim to reduce
over communication cost.

B. Communication Cost with Policies

We consider a multi-tier DC network which is typically
structured under a multi-root tree topology (canonical [15]
or fat-tree [12]).

Let V = {v1, v2, . . .} be the set of VMs in the DC
network hosted by the set of servers S = {s1, s2, . . .}.
Let λk(vi, vj) denote the traffic load (or rate) in data per
time unit exchanged between VM vi and vj (from vi to vj)
following policy pk.

For a group of middleboxes MB = {mb1,mb2, . . .},
there are various deployment points in DC networks. They
can be on the networking path or off the physical net-
work [4]. Without loss of generality, we consider that

middleboxes are attached to switches for improved flexibility
and scalability of policy deployment [4]. These middleboxes
may belong to different applications, deployed and config-
ured by a Middlebox Controller, see Fig. 1. The centralized
Middlebox Controller monitors the liveness of middleboxes
and informs the switches regarding the addition or fail-
ure/removal of a middlebox. Network administrators can
specify and update policies, and reliably disseminate them
to the corresponding switches through the Policy Controller
in Fig. 1.

The set of policies is P = {p1, p2, . . .}. Each policy pi is
defined in the form of {flow → sequence}. flow is rep-
resented by a 5-tuple: {srcip, dstip, srcport, dstport, proto}
(i.e., source and destination IP addresses and port numbers,
and protocol type). sequence is a list of middleboxes
that all flows matching policy pi should traverse them in
order: pi.sequence = {mbi1,mbi2, . . .}. We denote pini and
pouti to be the first (ingress) and last (egress) middleboxes
respectively in pi.sequence. Let P (vi, vj) be the set of all
policies defined for traffic from vi to vj , i.e., P (vi, vj) =
{pk|pk.src = vi, pk.dst = vj}.

We denote L(ni, nj) to be the routing path between nodes
(e.g., VM, middlebox or switch) ni and nj . l ∈ L(ni, nj) if
link l is on the path. If a flow from VM vi to vj is matched
to policy pk, its actual routing path is:

Lk(vi, vj) = L(vi, p
in
k)

+
∑

mbks 6=pout
k

L(mbks ,mb
k
s+1)

+ L(poutk , vj)

(1)

Not all DC links are equal, and their cost depends on the
particular layer they interconnect. High-speed core router
interfaces are much more expensive (and, hence, oversub-
scribed) than lower-level ToR switches [13]. Therefore, in
order to accommodate a large number of VMs in the DC and
at the same time keep investment cost low from a providers
perspective, utilization of the “lower cost” switch links is
preferable to the “more expensive” router links. Let ci denote
the link weight for li. In order to reflect the increasing cost of
high-density, high-speed (10 Gb/s) switches and links at the
upper layers of the DC tree topologies, and their increased
over-subscription ratio, we can assign a representative link
weight ωi for an ith-level link per data unit. Without loss of
generality, in this case ω1 < ω2 < ω3.

Hence, the Communication Cost of all traffic from VM
vi to vj is defined as

C(vi, vj) =
∑

pk∈P (vi,vj)

λk(vi, vj)
∑

ls∈Lk(vi,vj)

cs

=
∑

pk∈P (vi,vj)

(Ck(vi, p
in
k) + Ck(p

in
k , p

out
k)

+ Ck(p
out
k , vj))

(2)

where Ck(vi, p
in
k) = λk(vi, vj)

∑
ls∈L(vi,pin

k)

cs is the commu-

nication cost between vi and pink for flows which matched
pk. Similarly, Ck(p

out
k , vj) is the communication cost be-

tween poutk and vj for pk, and Ck(p
in
k , p

out
k) is the commu-

nication cost between pink and poutk .
Since we jointly consider compliance of network policies

and minimization of network communication cost through
VM migration, Ck(p

in
k , p

out
k) in (2) can be ignored as it

makes no contribution to the minimization of the communi-
cation cost.

C. Policy-Aware VM Allocation Problem

We denote MBin(vi) to be the set of ingress middle-
boxes of all outgoing flows from vi, i.e., MBin(vi) =
{mbj |mbj = pink , pk.src = vi}. Similarly, MBout(vi) =
{mbj |mbj = poutk , pk.dst = vi} is the set of egress
middleboxes of all incoming flows to vi.

As each server is connected to an edge switch, and each
edge switch can retrieve the global graph of all middleboxes
from the Policy Controller, we define all the servers that
can reach middlebox mbk as S(mbk). Thus, to preserve the
policy requirements, the acceptable servers that a VM vi can
migrate to are:

S(vi) =
⋂

mbk∈MBin(vi)∪MBout(vi)

S(mbk) (3)

Hence, for traffic not governed by any policies, S(vi) is all
servers that can be reached by vi, i.e., possible destinations
where vi can be migrated to.

The vector Ri denotes the physical resource requirements
of VM vi. For instance, Ri could have three components
that capture three types of physical resources such as CPU
cycles, memory size, and I/O operations, respectively. Ac-
cordingly, the amount of physical resource provisioning by
host server sj is given by a vector Hj . And Ri � Hj means
all types of resource of sj are enough to accept vi.

We denote A to be an allocation of all VMs. A(vi) is
the server which hosts vi in A, and A(sj) is the set of
VMs hosted by sj . Considering a migration for VM vi
from its current allocated server A(vi) to another server ŝ:
A(vi)→ ŝ, the feasible space of candidate servers for vi is
characterized by:

Si = {ŝ|(
∑

vk∈A(ŝ)

Rk +Ri) � Hj , ŝ ∈ S(vi)} (4)

Let Ci(sj) be the total communication cost induced by vi
between sj and MBin(vi)∪MBout(vi), where sj = A(vi).

Ci(sj) =
∑

pk∈P (vi,∗)

Ck(vi, p
in
k) +

∑
pk∈P (∗,vi)

Ck(vi, p
out
k)

(5)
Migrating a VM also generates network traffic between

the source and destination hosts of the migration, as it
involves copying the in-memory state and the content of

CPU registers between the hypervisors. The live migration
allows moving a continuously running VM from one phys-
ical host to another. To enable that, modern DC networks
use a technique called pre-copy and it is comprised of three
phases: pre-copy phase, pre-copy termination phase and
stop-and-copy phase [16]. The amount of traffic depends on
the memory size of the VM, its page dirty rate, the available
bandwidth for the migration and some other hypervisor-
specific constants [17].

The estimated migration cost defined in [17] is:

Cm(vi) =M · 1− (R/L)n+1

1− (R/L)
(6)

where n = min(dlogR/L
T ·L
M e, dlogR/L

X·R
M ·(L−R)e) is the

number of pre-copy cycles, M is the memory size of vi,
R is the page dirty rate, and L is the bandwidth used for
migration. X and T are user settings for the minimum
required progress for each pre-copy cycle and the maximum
time for the final stop-copy cycle, respectively [17].

Such migration overhead can be measured by the hypervi-
sor hosting the VM and should not outweigh the reduction in
the overall communication cost. We then consider the utility
in terms of the expected benefit (of migrating a VM to a
server) minus the expected cost incurred by such operation.
The utility of the migration A(vi)→ ŝ is defined as:

U(A(vi)→ ŝ) = Ci(A(vi))− Ci(ŝ)− Cm(vi) (7)

Specifically, U(A(vi)→ ŝ) = 0 if no migration takes place,
i.e., A(vi) = ŝ. The total utility UA→Â is the summation of
utilities for all migrated VMs from allocation A to Â.

The PoLicy-Aware VM maNagement (PLAN) problem is
defined as follows:

Definition 1. Given the set of VMs V, servers S, policies P,
and an initial allocation A, we need to find a new allocation
Â that maximizes the total utility:

max UA→Â

s.t. UA→Â > 0

Â(vi) ∈ Si,∀vi ∈ V
(8)

PLAN can be treated as a restricted version of the Gener-
alized Assignment Problem (GAP) [18]. However, the GAP
is APX-hard to approximate [18]. The existing centralized
approximation algorithms are too complex and infeasible
to implement over a DC environment, which could include
thousands or millions of servers, VMs, switches and traffic
flows.

Theorem 1. The PLAN problem is NP-Hard.

Proof: To show the non-polynomial complexity of
PLAN, we will show that the Multiple Knapsack Problem
(MKP) [19], whose decision version has already been proven
to be strongly NP-complete, can be reduced to this problem
in polynomial time.

Consider a special case of allocation A0, in which all VMs
are allocated to one server s0, then the PLAN problem is to
find a new allocation Â for migrating VMs that maximizes
the total utility UA0→Â. We denote S′ = S \ {s0} to be
the set of destination servers for migration. For a VM vi,
suppose the computed communication cost induced by vi on
all candidate servers is the same, i.e., Ci(ŝ) = δi,∀ŝ ∈ S′,
where δi is a constant. Consider each VM to be an item
with size Ri and profit U(A(vi) → ŝ) = Ci(A(vi)) − δi −
Cm(vi), each server sj ∈ S′ to be knapsack with capacity
Hj . The PLAN problem becomes finding a feasible subset
of VMs to be migrated to servers S′, maximizing the total
profit. Therefore, the MKP problem is reducible to the PLAN
problem in polynomial time, and hence the PLAN problem
is NP-hard.

III. PLAN ALGORITHMS

The PLAN problem is a restricted version of the Gener-
alized Assignment Problem (GAP), which has been proved
APX-hard to approximate [18]. We can use some existing
centralized algorithms to approximately maximize the total
gained utility by migration, e.g., [20], [21]. However, the
computation times of those algorithms are unacceptable for
DCs, specially considering the large scales of servers, VMs,
switches and millions of traffic flows [14]. In this section, we
design a decentralized heuristic scheme to perform policy-
aware VMs migration.

A. Policy-Aware Migration Algorithms

Server hypervisors (or SDN controller, if used) will mon-
itor all traffic load for each collocated VM vi. A migration
decision phase will be triggered periodically during which
vi will compute the appropriate destination server ŝ for
migration. If no migration is needed, U(A(vi) → ŝ) = 0.
Otherwise, the total utility is increased after migration when
A(vi) 6= ŝ.

Algorithm 1 and Algorithm 2 show the corresponding
routines for VMs (PLAN-VM) and servers (PLAN-Server),
respectively. PLAN-VM is only triggered for a migration
decision every Tm + τ time, where τ is a random value
to avoid synchronization of VM migrations. PLAN-VM
operations will be suppressed for Ts time period if vi is
migrated to a new server, avoiding too frequent migration
or oscillation among servers. The value of Ts depends on
the traffic patterns, e.g., smaller value for a DC with more
stable traffic. PLAN-Server is designed for hypervisors on
servers which can accept requests from VMs based on the
residual resources of the corresponding server and prepare
for migration of remote (incoming) VMs.

Several control messages will be exchanged for both
PLAN-VM and PLAN-Server. The interface sendMsg(type,
destination, resource) sends a control message of a spec-
ified type and resource declaration to the destination. The

Algorithm 1 PLAN-VM for vi

/∗ Triggered every Tm + τ period∗/
1: L = ∅
2: DECISION-MIGRATION(vi, L)
3: loop
4: msg ← getMsg()
5: switch msg.type do
6: case reject
7: L = L ∪ {msg.sender}
8: DECISION-MIGRATION(vi, L)
9: case accept

10: sendMsg(migrate, msg.sender, Ri)
11: perform migration: vi → s

12: end switch
13: end loop

14: function DECISION-MIGRATION(vi, L)
15: s0 ← A(vi)
16: Si ← feasible servers in Equation (4)
17: X ← argmaxx∈Si\L U(A(vi)→ x)
18: if X 6= ∅ && s0 6∈ X then
19: s← the one with most residual resources in X
20: sendMsg(request, s, Ri)
21: else
22: exit . exit whole algorithm if no migration
23: end if
24: end function

interface getMsg() reads such messages when received. The
request message is a probe from VM to a destination server
for migration. A server can respond by sending back an
accept or reject message, according to the residual resource
of the server and the requirements of the VM. If the server
accepts the request from the distant VM, a migrate message
will be sent back as confirmation.

For each VM vi, the PLAN-VM algorithm starts with
checking feasible servers, in a greedy manner, for improving
utility by calling the function Decision-Migration(), e.g.,
line 2 and 7. The function Decision-Migration() will find
a potential destination server for vi to perform migration. A
blacklist L is maintained during each execution of PLAN-VM
to avoid repeating request for the same servers which reject
vi previously. If a feasible server s accepts vi’s request, vi
will be migrated to s, e.g., line 10 ∼ 11. For each server
sj , the PLAN-Server algorithm keeps listening incoming
migration request from VMs. For a request from vi, sj
will check its residual resources and send back an accept
message if it has enough resource to host vi, e.g., line 5 ∼ 8.
Otherwise, it will reject the migration request of vi, e.g., line
16.

The PLAN scheme described in Algorithms 1 and 2 can
decrease the total communication cost and will eventually

Algorithm 2 PLAN-Server for sj

1: loop
2: msg ← getMsg()
3: switch msg.type do
4: case request
5: vi = msg.sender
6: Ri = msg.resouce
7: if

∑
vk∈A(sj)

Rk +Ri ≤ Hj then
8: sendMsg(accept, vi)
9: else

10: sendMsg(reject, vi)
11: end if
12: case migrate
13: if

∑
vk∈A(sj)

Rk +Ri ≤ Hj then
14: provisionally resource reservation etc.
15: else
16: sendMsg(reject, vi)
17: end if
18: end switch
19: end loop

converge to a stable state:

Theorem 2. Algorithms 1 and 2 will converge after a finite
number of iterations.

Proof: The cost of each VM vi is determined by its
hosting server and related ingress/egress middleboxes in
MBin(vi) and MBout(vi). Hence, under the policy scheme
described in the previous section, the migrations of different
VMs are independent. Furthermore, each time a migration
occurs in line 11 of Algorithms 1, say, A(vi) → s, the
utility gained from the migration is always larger than
zero, i.e., U(A(vi) → s) > 0. Thus, the total induced
communication cost, which is always a positive value, is
strictly decreasing while VMs are migrating among servers.
So, the two algorithms will converge after a finite number
of steps.

B. Initial Placement

Policy-aware initial placement of VMs is also critical for
new VMs in DC networks. When a VM instance, say vi,
is to be initialized, the DC network controller needs to
find a suitable server to host the VM. Initially, predefined
application-specific policies should be known for vi. To-
gether with vi’s resource requirement Ri and all servers’
residual resources in the DC network, the feasible decision
space Si can be obtained through Equation (4). Since the
VM has just been initialized, its traffic load might not be
available. However, we can still choose the best server to
host vi by considering traffic of all policies for vi equally,
e.g., λk = 1,∀pk ∈ P (vi, ∗) ∪ P (∗, vi). In particular, the
migration cost Cm(vi),∀vi ∈ V, is set to be zero during

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Utility Improvement (%)

C
D

F
 o

f
U

ti
lit

y
/C

o
s
t

PLAN

PLAN−RIP

(a) CDF: ratio of utility to communica-
tion cost

No Migration One Two Three
0

10

20

30

40

50

60

70

P
e

rc
e

n
ta

te
 (

%
)

Number of Migrations

PLAN

PLAN−RIP

(b) Number of migrations before con-
vergence

Figure 2: Performance of PLAN

initial placement. Then, the destined server to host vi is
argmaxs∈Si Ci(s).

IV. EVALUATION

A. Experimental Setup

We have implemented PLAN in ns-3 [22] and evaluated
it under a fat-tree DC topology. In our simulation environ-
ment, a single VM is modeled as a collection of socket
applications communicating with one or more other VMs in
the DC network. For each server, we have implemented a
VM hypervisor application to manage all collocated VMs
on the server. The hypervisor also supports migration of
VMs among different servers in the network. Fat-tree is
a representative DC topology and hence, results from this
topology should extend to other types of DC networks
without loss of generality.

In order to model a typical DC server’s capability, we have
limited the CPU and memory resources for accommodating
a certain number of VMs. For example, a server equipped
with 16GB RAM and 8 cores can safely allow 8 VMs
running concurrently if each VM occupies one core and
1GB RAM (the CPU and memory occupied by VMs can
be varied). Throughout the simulation, we created 2320
VMs on the 250 servers. Each VM has average 10 random
outgoing socket connections, which are CBR traffic with
a randomly generated rate. We have considered practical
bandwidth limitations such that the aggregate bandwidth
required by all VMs in a host does not exceed the network
capacity of its physical interface. Therefore, a VM migration
is only possible when the target host has sufficient system
resources and bandwidth, i.e., a feasible server as defined in
Equation (4).

We have also implemented the policy scheme described
in Section III. In all experiments, we have set 10% of
flows to be policy-free, meaning that they are not subject
to any of the existing network policies in place. For the
other 90% of flows, they have to traverse a sequence of
middleboxes as required by policies before being forwarded
to their destination [4]. Specially, each policy-constrained

flow is configured to traverse 1∼3 middleboxes, including
Firewall, IPS or LB.

To demonstrate the benefit of PLAN, we compare it
with S-CORE [14], a similar but non policy-aware VM
management scheme which has been shown to outperform
other schemes, e.g., Remedy [17]. S-CORE is a live VM
migration scheme that reduces the topology-wide communi-
cation cost through clustering VMs without considering any
underlying network policies. A VM migration takes place so
long as it yields a positive utility, the communication cost
reduction outweighs the migration cost, and the target server
has sufficient resources to accommodate the new VM. In
addition, PLAN by default is used with the initial placement
algorithm described in Section III-B. In contrast, S-CORE
initially starts with a set of randomly allocated VMs. In order
to offset such a bias, we have also simulated PLAN without
using the initial placement algorithm (which is referred to
as PLAN with Random Initial Placement or PLAN-RIP in
the sequel).

Alongside the communication cost, we also consider
the impact of policies on average route length and link
utilization. Route length is defined as the number of hops
for each flow, including the additional route for traversing
middleboxes. Link utilization is calculated on each layer
of links in the fat-tree topology, i.e., Edge Layer links
interconnect servers and edge switches, Aggr Layer links
interconnect edge and aggregation switches, and Core Layer
links interconnect aggregation switches to core routers.

B. Experimental Results

We first evaluate the performance of PLAN. Fig. 2 demon-
strates some unique properties of PLAN in progress towards
convergence in terms of communication cost improvement
as well as number of migrations. Fig. 2a depicts the im-
provement of individual VM’s communication cost after
each migration through calculating the ratio of utility to the
communication cost of that VM before migration. It can
be observed that each migration can reduce communication
cost by 39.06% on average for PLAN and 34.19% for PLAN-
RIP, respectively. Nearly 60% of measured migrations can
effectively reduce their communication cost by as much as
40%. Such improvements are more significant when PLAN
is used without an initial placement scheme in which VMs
are allocated randomly at initialization. Fig. 2b shows the
number of migrations per VM as PLAN converges. In PLAN,
as a result of initial placement, only 30% of VMs need
to migrate only once to achieve stable state throughout
the whole experimental run. In comparison, 60% of VMs
in PLAN-RIP need to migrate once when it converges.
Nevertheless, in both schemes (with and without initial
placement), we observe that very few (< 1%) VMs need
to migrate twice and no VM needs to migrate three times or
more. These results demonstrate that low-cost, low-overhead

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

of VMs per Server

C
D

F
 o

f
V

M
s
 p

e
r

S
e

rv
e

r

Initial State

Converged State

Figure 3: VMs clustering on servers at different states

initial placement can significantly reduce migration overhead
in general.

We also study the transitioning state behavior of PLAN to
reveal its intrinsic properties. Fig. 3 shows the snapshot of
VM allocations at both the initial and the converged states
of PLAN. Initially, before PLAN is running, VMs are nearly
randomly distributed on servers, e.g., each server hosts 5∼12
VMs. After PLAN converges, plenty of VMs are clustered
into several groups of servers, e.g., nearly 16% of servers
host 56.55% of the total VMs. Moreover, an important
property we can exploit is that 3.2% of servers are idle when
PLAN converges and they can be safely shutdown to, e.g.,
save power.

Next, we present performance results of PLAN when
compared to S-CORE. Fig. 4 shows the overall commu-
nication cost reduction (measured in terms of number of
bytes using network links), average end-to-end route length,
as well as link utilization for all layers, for all the three
schemes. Fig. 4a demonstrates that PLAN and PLAN-RIP
can efficiently converge to a stable allocation. PLAN reduces
the total communication cost by 22.42% while PLAN-RIP
achieves an improvement of up to 38.27% which is a factor
of nearly eight times better than S-CORE whose improve-
ment is a mere 4.79%. The reason that PLAN-RIP has higher
improvement is that the initial random VM placement offers
more space for optimization than the already policy-aware
initial placement of PLAN. However, it is evident that this
potential is not exploited by S-CORE. More importantly,
as shown in Fig. 4b, by migrating VMs, the average route
length can be significantly reduced by as much as 20.12%
and 10.08% for PLAN-RIP and PLAN, respectively, while
S-CORE only improves it by 4.22%. Being able to reduce
the average route length is an important feature of PLAN
as it implies that flows can be generally completed faster
and are less likely to create congestion in the network. Both
Fig. 4a and 4b show that PLAN can effectively optimize the
network-wide communication cost by localizing frequently
communicated VMs as well as to reduce the length of the
end-to-end path.

For the same reasons, Fig. 4c and 4d demonstrate that

PLAN can mitigate link utilization at the core and aggrega-
tion layers by 30.55% and 7.01%, respectively. For PLAN-
RIP, because it starts with random allocation of VMs which
is non-optimal and inefficient compared to PLAN with initial
placement, it can reduce link utilization across the core and
aggregate layer links by 42.87% and 12.81%, respectively.
The corresponding reduction for S-CORE is only 4.6% and
4.8%, respectively. On the other hand, utilization improve-
ment on edge links is marginal for all three schemes, since
they try to fully utilize lower-layer links where bisection
bandwidth is maximum. Mitigation of link utilization at core
and aggregation layers means that PLAN can effectively
create extra topological capacity headroom for accommo-
dating larger number VMs and services. Meanwhile, Fig. 4
also reveals that PLAN’s initial placement algorithm can
greatly improve the communication cost, route length and
link utilization. Then, the algorithm itself can continue to
adaptively optimize network resource usage as it evolves
after initial placement.

In order to examine PLAN’s adaptability to dynamic
changes in policy configuration and traffic patterns, Fig. 5
presents the algorithm’s performance results when policies
are changed at 50s, 100s, and 150s, respectively, and after
the algorithm had initially converged. Since S-CORE does
not consider the underlying network policies, its perfor-
mance is independent of policy configurations and is thus
omitted. Throughout the experiments shown in Fig. 5, 10%
of policies are removed at 50s, making the corresponding
flows policy-free. This leads the DC to an non-optimized
state, leaving room for further optimizing VMs allocations.
Due to policy-awareness, PLAN can promptly adapt to new
policy patterns, reducing the total communication cost, route
length and link utilization to a great extent. The sudden drop
at 50s is due to policy-free flows not needing to traverse
through any middleboxes, hence causing the total commu-
nication cost to fall immediately. The same phenomenon
can be observed when new policies are added at 100s and
existing policies are modified at 150s. In particular, disabling
some policies produces new policy-free flows so PLAN can
localize their hosting VMs, greatly improving bandwidth.
So, core-layer link utilization is promptly reduced when
some policies are disabled at 50s. All the above results
demonstrate that PLAN is highly adaptive to dynamism in
policy configuration.

V. RELATED WORK

Network policy management research to date has either
focused on devising new policy-based routing/switching
mechanisms or leveraging Software-Defined Networking
(SDN) to manage network policies and guarantee their
correctness [11][23]. Joseph et al. [4] proposed PLayer, a
policy-aware switching layer for DCs consisting of inter-
connected policy-aware switches (pswitches). Vyas et al. [3]
proposed a middlebox architecture, CoMb, to actively con-

5 10 15 20 25
3.5

4

4.5

5

5.5

6

6.5

7
x 10

7

T
o
ta

l
C

o
s
t

Time(s)

PLAN

PLAN−RIP

S−CORE

(a) Total communication cost

5 10 15 20 25
6.5

7

7.5

8

8.5

A
v
e

ra
g

e
 R

o
u

te
 L

e
n

g
th

 (
h

o
p

s
)

Time(s)

PLAN
PLAN−RIP
S−CORE

(b) Average route length

5 10 15 20 25
0.2

0.25

0.3

0.35

0.4

L
in

k
 u

ti
liz

a
ti
o
n

Time(s)

Edge Layer (PLAN−RIP)
Aggr Layer (PLAN−RIP)
Core Layer (PLAN−RIP)
Edge Layer (S−CORE)
Aggr Layer (S−CORE)
Core Layer (S−CORE)

(c) Link utilization

5 10 15 20 25
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

L
in

k
 u

ti
liz

a
ti
o
n

Time(s)

Edge Layer (PLAN)
Aggr Layer (PLAN)
Core Layer (PLAN)

(d) Link utilization

Figure 4: Performance comparison of PLAN and S-CORE VM migration schemes

50 100 150 200
3.4

3.45

3.5

3.55

3.6

3.65

3.7

3.75

3.8

3.85
x 10

8

T
o

ta
l
C

o
s
t

Time(s)

Total Cost

(a) Change of total communication cost

50 100 150 200
7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

A
v
e
ra

g
e
 R

o
u
te

 L
e
n
g
th

 (
h
o
p
s
)

Time(s)

Avg Route Length

(b) Change of route length

Figure 5: Performance of PLAN with dynamic policies.

solidate middlebox features and improve middlebox uti-
lization, reducing the number of required middleboxes for
operational environments.

Recent developments in SDN enable more flexible mid-
dlebox deployments over the network while still ensuring
that specific subsets of traffic traverse the desired set of
middleboxes [7]. Zafar et al. [10] proposed SIMPLE, a SDN-
based policy enforcement scheme to steer DC traffic in ac-
cordance to policy requirements. Similarly, Fayazbakhsh et
al. presented FlowTags [9] to leverage SDN’s global network
visibility and guarantee correctness of policy enforcement.
However, these proposals are not fully designed with VMs
migration in consideration, and may put migrated VMs on
the risk of policy violation and performance degradation.

Multi-tenant Cloud DC environments require more dy-
namic application deployment and management as demands
ebb and flow over time. As a result, there is consider-
able literature on VM placement, consolidation and mi-
gration for server, network, and power resource optimiza-
tion [24][25][26][14][27]. Song et al.[26] proposed a multi-
objective optimization model based on detailed analysis of
the impact of CPU temperature, resource usage and power
consumption in VM selection. Zhang et al.[27] present a
Metadata based VM migration approach (Mvmotion) to
reduce the amount of transferred data during migration
by utilizing memory de-redundant technique between two

physical hosts. However, none of these research efforts
consider network policy in their design. The closest work to
PLAN is a framework for Policy-Aware Application Cloud
Embedding (PACE) [1] to support application-wide, in-
network policies, and other realistic requirements such as
bandwidth and reliability. However, PACE only considers
one-off VM placement in conjunction with network policies
and hence fails to deal with and further improve resource
utilization in the face of dynamic workloads.

VI. CONCLUSION

In multi-tenant Cloud Data Center (DC), network policies
are popular used to provide secure and high performance
services. In this paper, we have studied the optimization of
DC network resource usage while adhering to a variety of
policies governing the flows routed over the infrastructure.
We have presented PLAN, a policy-aware VM management
scheme that meets both efficient DC resource management
and middleboxes traversal requirements. Through the defi-
nition of communication cost that incorporates policy, we
have modeled an optimization problem of maximizing the
utility (i.e., reducing total communication cost in DC) of
VM migration, which is then shown to be NP-hard. We
have subsequently derived a distributed heuristic approach to
approximately reduce communication cost while preserving
policy guarantees. Our results show that PLAN can reduce
network-wide communication cost by 38% over diverse
aggregate traffic loads and network policies, and is adaptive
to changing policy and traffic dynamics.

ACKNOWLEDGMENT

This work is partly supported by the National China
973 Project No. 2015CB352401, Shanghai Science Research
Program Project No. 15JC1402400, “Fundamental Research
Funds for the Central Universities” No. 21614330 and
NSFC No. 61402200, Shanghai Scientific Innovation Act
of STCSM(No.15JC1402400).

REFERENCES

[1] L. E. Li, V. Liaghat, H. Zhao, M. Hajiaghayi, D. Li,
G. Wilfong, Y. R. Yang, and C. Guo, “PACE: Policy-aware
application cloud embedding,” in Proceedings of 32nd IEEE
INFOCOM, 2013.

[2] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Rat-
nasamy, and V. Sekar, “Making middleboxes someone else’s
problem: Network processing as a cloud service,” ACM
SIGCOMM Computer Communication Review, vol. 42, no. 4,
pp. 13–24, 2012.

[3] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi,
“Design and implementation of a consolidated middlebox
architecture.” in NSDI, 2012, pp. 323–336.

[4] D. A. Joseph, A. Tavakoli, and I. Stoica, “A policy-aware
switching layer for data centers,” in ACM SIGCOMM Com-
puter Communication Review, vol. 38, no. 4. ACM, 2008,
pp. 51–62.

[5] S. Sivakumar, G. Yingjie, and M. Shore, “A framework
and problem statement for flow-associated middlebox state
migration,” 2012.

[6] L. Cui, F. P. Tso, D. P. Pezaros, W. Jia, and W. Zhao, “Policy-
aware virtual machine management in data center networks,”
in IEEE International Conference on Distributed Computing
Systems (ICDCS), 2015.

[7] A. Gember, P. Prabhu, Z. Ghadiyali, and A. Akella, “Toward
software-defined middlebox networking,” in Proceedings of
the 11th ACM Workshop on Hot Topics in Networks. ACM,
2012, pp. 7–12.

[8] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn,”
Queue, vol. 11, no. 12, p. 20, 2013.

[9] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C.
Mogul, “Enforcing network-wide policies in the presence of
dynamic middlebox actions using flowtags,” in Proc. USENIX
NSDI, 2014.

[10] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and
M. Yu, “Simple-fying middlebox policy enforcement using
sdn,” ACM SIGCOMM Computer Communication Review,
vol. 43, no. 4, pp. 27–38, 2013.

[11] A. Gember, C. P. Raajay Viswanathan, R. Grandl, J. Khalid,
S. Das, and A. Akella, “OpenNF: enabling innovation in
network function control,” in Proceedings of the 2014 ACM
conference on SIGCOMM. ACM, 2014, pp. 163–174.

[12] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, com-
modity data center network architecture,” in ACM SIGCOMM
Computer Communication Review, vol. 38, no. 4. ACM,
2008, pp. 63–74.

[13] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The
cost of a cloud: research problems in data center networks,”
ACM SIGCOMM computer communication review, vol. 39,
no. 1, pp. 68–73, 2008.

[14] F. P. Tso, K. Oikonomou, E. Kavvadia, and D. Pezaros, “Scal-
able traffic-aware virtual machine management for cloud data
centers,” in IEEE International Conference on Distributed
Computing Systems (ICDCS), 2014.

[15] Cisco, “Data center: Load balancing data center services,”
2004.

[16] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield, “Live migration of
virtual machines,” in Proceedings of the 2nd conference on
Symposium on Networked Systems Design & Implementation-
Volume 2. USENIX Association, 2005, pp. 273–286.

[17] V. Mann, A. Gupta, P. Dutta, A. Vishnoi, P. Bhattacharya,
R. Poddar, and A. Iyer, “Remedy: Network-aware steady state
vm management for data centers,” in NETWORKING 2012.
Springer, 2012, pp. 190–204.

[18] D. G. Cattrysse and L. N. Van Wassenhove, “A survey of al-
gorithms for the generalized assignment problem,” European
Journal of Operational Research, vol. 60, no. 3, pp. 260–272,
1992.

[19] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack problems.
Springer Verlag, 2004.

[20] R. Cohen, L. Katzir, and D. Raz, “An efficient approximation
for the generalized assignment problem,” Information Pro-
cessing Letters, vol. 100, no. 4, pp. 162–166, 2006.

[21] H. Ramalhinho and D. Serra, “Adaptive search heuristics
for the generalized assignment problem,” Mathware & soft
computing, vol. 9, no. 3, pp. 209–234, 2008.

[22] “NS-3.” [Online]. Available: http://www.nsnam.org

[23] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C.
Mogul, “Extending sdn to handle dynamic middlebox actions
via flowtags,” Presented as part of the Open Networking
Summit, vol. 2014, 2014.

[24] M. Wang, X. Meng, and L. Zhang, “Consolidating virtual
machines with dynamic bandwidth demand in data centers,”
in 2011 Proceedings IEEE INFOCOM. IEEE, 2011, pp.
71–75.

[25] J. W. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang, “Joint
vm placement and routing for data center traffic engineering,”
in 2012 Proceedings IEEE INFOCOM. IEEE, 2012, pp.
2876–2880.

[26] A. Song, W. Fan, W. Wang, J. Luo, and Y. Mo, “Multi-
objective virtual machine selection for migrating in virtual-
ized data centers,” in Pervasive Computing and the Networked
World. Springer, 2013, pp. 426–438.

[27] Z. Zhang, L. Xiao, M. Zhu, and L. Ruan, “Mvmotion: a
metadata based virtual machine migration in cloud,” Cluster
Computing, pp. 1–12, 2013.

