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Abstract—Maximizing return-on-investment through efficient
resource usage of Data Center (DC) infrastructures is of
paramount importance for Cloud service providers. Although a
number of networking architectures and routing/flow scheduling
protocols have been developed to offer full bisection bandwidth
over such topologies, deployment costs and machine virtual-
ization can impact the aggregate network load and result in
episodes of congestion, especially at the core. In this paper, we
propose S-CORE, a scalable Virtual Machine (VM) migration
strategy to dynamically allocate VMs to servers so that the overall
communication footprint of the active traffic flows is minimized.
We first formulate the aggregate VM communication as an
optimization problem whose solution minimizes acommunication
cost function. This optimal yet centralized approach is of high
complexity and requires global information, constituting it not
scalable for inherently dynamic DC environments. We then
define a distributed migration policy based on local information
that adapts to dynamic traffic changes and achieves significant
communication cost reduction. We evaluate S-CORE over diverse
aggregate load, DC topologies, and coordination policies,and we
show that it can achieve up to 90% communication cost reduction,
while its locality properties can be exploited for other purposes
such as energy footprint reduction.

I. I NTRODUCTION

Cloud computing is steadily emerging as a dominant pro-
cessing paradigm where ICT resources are outsourced to
Cloud providers that offer infrastructure, platform or soft-
ware as a service. Significant research effort has recently
focused on the underlying Data Center (DC) infrastructure
design [1][2][3][4][5], and into resource allocation mecha-
nisms [6][7][8][9] that can maximize network and server usage
efficiency. Although DCs are built on top of commodity Inter-
net switching/routing and transport protocols, it is clearthat
the over-provisioning paradigm of the Internet is not sustain-
able, since the significant capital outlay for companies setting
up a Cloud site (including server, infrastructure, electricity
and networking costs) makes return-on-investment through
maximization of resource usage efficiency crucial [10]. De-
spite early DC topologies aiming to provide full bisectional
bandwidth between any server pair, in practice, network band-
width available to servers is often over-subscribed due to the
cost associated with deploying and expanding such topologies.
While Cloud computing is still at its early stages and we are
yet to see a full-blown application matrix over DC topologies
(currently, http(s), DFS, authentication flows dominate),the
observed load already constitutes a significant fraction ofthe
topologies’ total capacity [1][11].

Resource virtualization is a powerful mechanism in that
respect, since it can be exploited to map available re-
sources to current or anticipated demand. Research into Vir-
tual Machine (VM) placement, consolidation and migration
has mainly tried to efficiently allocate server-side resources,
such as CPU usage, memory usage or aggregated network
I/O [12][13][14][15][16]. While server-side metrics are useful
for ensuring server resources are not over-subscribed and
can be used to reduce the number of servers required to be
powered on, they take no account of the resulting congestion,
especially over the expensive core links of the network. On the
contrary, recent evidence suggests that machine virtualization
has itself a significant impact on Cloud environments, causing
dramatic performance and cost variations which mainly relate
to networking rather than software bottlenecks [17][18].

In this paper, we define and evaluate a novel, dynamic VM
allocation scheme that minimizes the overall communication
cost of the DC topology while adhering to server-side resource
capacity boundaries. By assigning distinct link weights atthe
different layers of the DC infrastructure and taking into ac-
count the amount of data traffic carried over these links, a cost
function of the overall communication cost is defined. Thus,
communication cost is related to the intensity of the data traffic
over all link levels and the aforementioned link weights which
characterize various cost-incurring aspects such as investment
costs, energy consumption, use of congested/oversubscribed
links, etc., depending on DC operator policy. The problem
of minimizing this cost function can be solved in a central-
ized manner to derive the optimal VM allocation (i.e., an
allocation that results in the minimum overall communication
cost). However, this optimal centralized approach is of high
complexity and requires global information, and is therefore
not scalable for the considered environments.

We propose S-CORE under which we iteratively localize
pairwise VM traffic to lower-layer links where bandwidth is
not as over-subscribed as it is in the core, and interconnection
switches are cheaper to upgrade [19]. S-CORE naturally
exploits network locality and reduces traffic over the high-
cost aggregate links. At the same time, it abstracts from the
topology characteristics and can be readily extended to apply
to current and future DC network architectures. In contrastto
existing work that uses complex centrally-controlled optimiza-
tion algorithms [15][20][21], S-CORE adopts a distributedap-
proach based on information available locally at the VM level,
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a property that makes our approach scalable and realistically
implementable over large-scale DC infrastructures. In addition,
we have implemented four distinct VM migration policies and
evaluated their efficiency and relative cost.

Simulation results show that we can significantly reduce
traffic over the high-cost links at the core of the topology
that have been shown to experience congestion even when
lower communication layers are under-utilized [11][17]. Our
results show great promise in achieving overall communication
cost reduction of as high as 90% of the optimal allocation
approximated by the centralized algorithm that assumes global
traffic knowledge, and is in practice prohibitively expensive to
implement. Our approach differentiates considerably fromex-
isting network-aware VM migration strategies that solely focus
on balancing network load [9] or on clustering VM activity
on a subset of servers to reduce energy consumption [22].

This work significantly contributes towards engineering DC
networks that are continuously self-optimizing to avoid both
underloaded and overloaded topologies, therefore avoiding
performance bottlenecks while at the same time alleviating
the prohibitive cost of over-provisioning.

The remainder of this paper is structured as follows. Section
II presents an overview of our migration scheme and its
associated definitions. Section III describes the cost analysis
of VM allocation in a DC. Section IV introduces the details of
our S-CORE scheme. Section V presents an evaluation using
a simulation model. Section VI discusses related work, and
Section VII concludes the paper.

II. SYSTEM DEFINITION

In this section, we formalize the problem of communication
cost reduction and the concepts of allocation, communication
level, and link weights. LetV be the set of VMs in the DC
hosted by the set of all serversS, such that every VMu ∈ V

and every server̂x ∈ S. Each VMu in the DC is unique and
it is assigned a unique identifierIDu. Furthermore, each VM
is hosted by a particular server and letA denote anallocation
of VMs to servers within the DC. Let̂σA(u) be the server
that hosts VMu for allocationA. Obviously, u ∈ V and
σ̂A(u) ∈ S. Let Vu denote the set of VMs that exchange data
with VM u.

Communication among VMs in a DC is dictated by the
network topology and the switching/routing algorithms em-
ployed. Typically, architectures offering redundant paths be-
tween servers are deployed to ensure high bisection bandwidth
and high availability. Without loss of generality, we consider a
layered reference network architecture [10] proposed by Cisco
[23], as shown in Fig. 1. However, we refrain from including
topological assumptions in our formulations, and therefore
minor adaptations to our algorithms would make them ap-
plicable to potentially any DC topology. The effectivenessof
our proposed approach to other DC topologies is demonstrated
later using simulation results. As depicted in Fig. 1, the DC
connects to the Internet through a set of core routers (CR). This
is the highest level of communication. One level below, access
routers (AR) interconnect CRs and the underlying aggregate
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Fig. 1: The considered network architecture for data centers as
proposed by Cisco [23].

switches (AS). ASes connect to switches (S) and the latter
connect to switches attached at the top of each rack (ToR).
Network links that connect ToR and S will be referred to
hereafter as1-level links, those between S and AS as2-level
links, etc.

Each rack is connected to the rest of the DC (and the
Internet) through a ToR switch and physically hosts a number
of servers (the number varies among rack types). Leth(x̂, ŷ)
denote thenumber of hopsbetween server̂x and serverŷ
along a shortest path. If a pair of servers is located at the same
rack, then there is no real network link between them. In this
case, the ToR switch plays a forwarding role that is a built-in
capability of the rack infrastructure and therefore,h(x̂, ŷ) = 0.
If the servers are located in different racks, thenh(x̂, ŷ) > 0.
For example, if serverŝx and ŷ communicate over a switch
(S), then this is a two hop communication, andh(x̂, ŷ) = 2,
as it can be observed from Fig. 1. If they communicate over
an AS,h(x̂, ŷ) = 4, etc.

Let ℓA(u, v) denote thecommunication levelbetween VM
u and VM v for a given allocationA. Obviously, if the
servers hosting VMsu and v are in the same rack, then
ℓA(u, v) = 0. If communication is established over1-level
links, then ℓA(u, v) = 1. In general, for the particular
network topology of Fig. 1,ℓA(u, v) = h(σ̂A(u),σ̂A(v))

2 . Let
ℓA(u) denote thehighest communication levelfor VM u for
allocationA, or ℓA(u) = max∀v∈Vu

ℓA(u, v).
Not all DC links are equal, and their cost depends on

the particular layer they interconnect. For example, high-
speed router interfaces are much more expensive than lower-
level ToR switches. Therefore, in order to accommodate a
large number of VMs in the DC and at the same time keep
investment costs low from a provider’s perspective, utilization
of the “lower cost” switch links is preferable to utilization
of the “more expensive” router links. The latter observation is
formulated in this work by assigning a representative “weight”
to every link level. In particular, letci denote thelink weight
for an i-level link per data unit (e.g., byte) representing the
previously mentioned cost. Obviously,c1 < c2 < c3 < c4

(the higher the level, the more expensive the interface). De-
termining link weights, and thus the communication cost, is
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based on DC operator policy and management priorities. For
example, if reduction of investment costs is the priority, then
link weights may be chosen to represent the market prices of
the interfaces. If energy consumption, congestion, etc., is the
crucial factor, then link weights can be chosen accordingly.

III. C OMMUNICATION COST ANALYSIS

The intensity of traffic exchange among each pair of VMs
indicates the utilization of the intermediate links. Even though
traditionally high utilization was the ultimate purpose, the
objective here is to utilize (if possible) links of small link
weights. Letλ(u, v) denote thetraffic load (or rate) in data
per time unit exchanged between VMu and VM v (incoming
and outgoing). Note that the traffic load is expected to vary
in such highly dynamic environments. Therefore,λ(u, v) will
denote the average rate of data exchanged among VMsu andv
over a certain time window, suitable to capture the dynamism
of the environment.

The focus of this work is on communication levels
ℓA(u, v) > 0. If ℓA(u, v) = 0, then both VMsu and v are
located at the same rack, and such pairwise traffic exchange
does not result in any network load that is the focus of
this study. For communication levelℓA(u, v) = 1, data are
exchanged over two links (i.e.,h(σ̂A(u), σ̂A(v)) = 2); the
corresponding link weight for using each link beingc1. For
each of the links, the productλ(u, v)c1 corresponds to a
(weighted) communication cost for utilizing the particular 1-
level link. If the communication is through level 2 of the
hierarchy (i.e.,ℓA(u, v) = 2), data exchanges take place over
four links, two being2-level (weight c2) and two 1-level
(weight c1) links. Eventually, the communication cost in this
case corresponds to2λ(u, v)(c1 + c2). In general, when the
communication among two VMsu andv is of level ℓA(u, v),

the communication cost corresponds to2λ(u, v)
∑ℓA(u,v)

i=1 ci.
Given that any VMu communicates with all VMs in setVu,

there is acommunication cost, denoted byCA(u), attributed
to VM u, for allocationA,

CA(u) = 2
∑

∀v∈Vu

λ(u, v)

ℓA(u,v)
∑

i=1

ci. (1)

It is now possible to derive an expression with respect to the
overall communication costfor all VM communications over
the DC. LetCA denote this cost for allocationA. Obviously,
CA(u) as CA = 1

2

∑

∀u∈V
CA(u) ( 12 is inserted since each

link is counted twice). Eventually,

CA =
∑

∀u∈V

∑

∀v∈Vu

λ(u, v)

ℓA(u,v)
∑

i=1

ci. (2)

Note that Eq. (2) does not take into account traffic ex-
changed with applications outside the DC. For this case any
shortest path is along CR, AR, AS, S, and ToR for any
allocationA.

From Eq. (2) it becomes obvious that in general, different
allocationsA correspond to different overall communication

costs. The objective here is to derive a particular allocation
for which the overall communication cost is minimized (i.e.,
optimal). Let Aopt denote anoptimal allocation, such that
CAopt ≤ CA, for any possibleA (note that there might
be more than one allocation that minimizes the overall com-
munication cost). To the best of our knowledge this is the
first time that such formulation is proposed for minimizing
communication costs in a DC environment.

The objective is to derive the optimal allocation for a given
DC environment and most importantly, to be able to adapt to
any dynamic changes in this environment. In special cases, the
optimal allocation can be easily derived. Assume, for example,
the case where all active VMs can be accommodated at a
single rack. In this case, it is straightforward to minimize
the overall communication cost: all VMs should be hosted
under the same rack. This observation is confirmed by Eq. (2),
however, this is a reduced case since DCs are built to support
a large number of VMs that are initially allocated in either
a random or a load-balanced manner. Therefore, the normal
case is that VMs are allocated in a significant fraction of – if
not all – available racks.

In the general case, the optimal allocation derivation is a dif-
ficult optimization problem because of (i) its high complexity
(given the number of permutations that must be considered in
an exhaustive search approach) and (ii) the global knowledge
required in a highly dynamic environment like a DC. Every
time the traffic dynamics change, there is a need to gather
that information and recompute the optimal values. Obviously,
such a centralized approach does not scale with the number
of VMs and the size of current DC topologies.

These observations motivate the proposal of a distributed
approach under which a VM will decide whether to migrate
based on information available locally, thus being scalable.
Such a distributed approach, called S-CORE, is proposed and
analyzed in the following section.

IV. D ESCRIPTION ANDANALYSIS OF S-CORE

The main focus in this section is on whether a VMu
should migrate to some other server or not in order to achieve
an overall communication cost reduction. The approach and
the analysis presented in the sequel assumes that there is a
token in the network and that the VM holding the token at a
given time is the one that decides whether to migrate or not.
Then, the token is passed on to another VM according to the
adoptedtoken policy. Different token policies are presented in
the Section V.

Let migration of a VM u from its current location (server
σ̂A(u)) to some other server̂x be denoted byu → x̂

for allocation A. If migration takes place, then allocation
A changes; letAu→x̂ denote the new allocation. Assum-
ing that migrationu → x̂ did take place, there is a new
communication costCAu→x̂(u) corresponding to allocation
Au→x̂. Let ∆CA

u→x̂(u) = CA(u) − CAu→x̂(u) denote the
communication cost differencethat is attributed to migration
u → x̂. The aim next is to determine the condition under
which ∆CA

u→x̂(u) > 0 is satisfied.
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Lemma 1:Given migrationu→ x̂, there is a communica-
tion cost difference,

∆CA
u→x̂(u) =

∑

∀z∈Vu

CA(z)− CAu→x̂(z). (3)

Proof: Migrationu→ x̂ affects the communication of all
VMs z ∈ Vu, in addition to that of VMu. The rest of the
VMs (i.e.,V \Vu ∪ {u}) are not affected and therefore, there
is no change in their corresponding communication costs. For
anyz ∈ Vu, the differenceCA(z)−CAu→x̂(z) corresponds to
the contribution of this particular VMz to the communication
cost difference∆CA

u→x̂(u). The lemma is proved by summing
up CA(z)− CAu→x̂(z), ∀z ∈ Vu.

Lemma 2:Given migrationu→ x̂, there is a communica-
tion cost difference,

∆CA
u→x̂(u) = 2

∑

∀z∈Vu

λ(z, u)





ℓA(z,u)
∑

i=1

ci −

ℓAu→x̂(z,u)
∑

i=1

ci



 .

(4)
Proof: As stated above, migrationu → x̂ affects

the communication of all VMsz ∈ Vu. Given allocation
A (before migration), then according to Eq. (1), for any
z ∈ Vu, CA(z) = 2

∑

∀v∈Vz
λ(z, v)

∑ℓA(z,v)
i=1 ci, which can

be written asCA(z) = 2
∑

∀v∈Vz\{u}
λ(z, v)

∑ℓA(z,v)
i=1 ci +

2λ(z, u)
∑ℓA(z,u)

i=1 ci.
Suppose that migrationu→ x̂ does take place. Considering

the new allocationAu→x̂, the corresponding communication
cost for any VMz ∈ Vu can be written as follows (similarly as
before),CAu→x̂(z) = 2

∑

∀v∈Vz\{u}
λ(z, v)

∑ℓAu→x̂(z,v)
i=1 ci+

2λ(z, u)
∑ℓAu→x̂(z,u)

i=1 ci.
At the same time, migrationu → x̂ does not affect

VMs z ∈ Vz \ {u}. Consequently,ℓA(z, v) = ℓAu→x̂(z, v),
∀z ∈ Vz \ {u}. Eventually, CA(z) − CAu→x̂(z) =

2λ(z, u)
(

∑ℓA(z,u)
i=1 ci −

∑ℓAu→x̂(z,u)
i=1 ci

)

, for any z ∈ Vu.
Based on Lemma 1, by summing up Eq. (3)∀z ∈ Vu, the
lemma is proved.

The following lemma derives an expression with respect
to the overall communication cost differenceCA − CAu→x̂ ,
denoted by∆CA

u→x̂.
Lemma 3:Given a movementu → x̂, the overall commu-

nication cost difference is given by,

∆CA
u→x̂ = 2

∑

∀z∈Vu

λ(z, u)





ℓA(z,u)
∑

i=1

ci −

ℓAu→x̂ (z,u)
∑

i=1

ci



 .

(5)
Proof: Given that the overall communication costCA

can be expressed asCA = 1
2

∑

∀z∈V
CA(z), it can

also be written as,CA = 1
2

∑

∀z∈V\Vu∪{u} C
A(z) +

1
2

∑

∀z∈Vu
CA(z) + 1

2C
A(u). Similarly, when migrationu→

x̂ takes place,CAu→x̂ = 1
2

∑

∀z∈V\Vu∪{u} C
Au→x̂(z) +

1
2

∑

∀z∈Vu
CAu→x̂(z) + 1

2C
Au→x̂(u).

Since migrationu→ x̂ does not affect the communication
of VMs v ∈ V \ Vu ∪ {u}, there is no change in the

communication level or communication costs for these VMs,
and thereforeCA(z) = CAu→x̂(z), ∀v ∈ V \ Vu ∪ {u}.

Consequently,∆CA
u→x̂ can be expressed byCA−CAu→x̂ =

1
2

∑

∀z∈Vu
CA(z) + 1

2C
A(u) − 1

2

∑

∀z∈Vu
CAu→x̂(z) −

1
2C

Au→x̂(u) = 1
2

(
∑

∀z∈Vu
CA(z)−

∑

∀z∈Vu
CAu→x̂(z)

)

+
1
2

(

CA(u)− CAu→x̂(u)
)

. It is derived that ∆CA
u→x̂ =

1
2

(
∑

∀z∈Vu
CA(z)− CAu→x̂(z)

)

+ 1
2

(

CA(u)− CAu→x̂(u)
)

.
Based on Eq. (3), and (4),CA − CAu→x̂ =

2
∑

∀z∈Vu
λ(z, u)

(

∑ℓA(z,u)
i=1 ci −

∑ℓAu→x̂(z,u)
i=1 ci

)

, and
the lemma is proved.

Migration of a VM from one server may be a complicated
task depending on the DC type. Even if it takes place in-
stantaneously, it requires copying of the VM environment,
configuration activities (e.g., IP addresses, routing tables),
etc., that correspond to a management overhead for the DC
operator. Obviously, for a certain VM migration to take place,
the described overhead (referred to hereafter asmigration cost
and denoted bycm) should be compensated by the gain of the
overall communication cost reduction. Therefore, condition
∆CA

u→x̂ > cm should be satisfied. The following theorem
provides the fundamental condition that needs to be satisfied
for a migrationu→ x̂ to take place.

Theorem 1:When migration u → x̂ takes
place, the overall communication cost compensates
for the migration cost cm, if and only if,
∑

∀z∈Vu
λ(z, u)

(

∑ℓA(z,u)
i=1 ci −

∑ℓAu→x̂ (z,u)
i=1 ci

)

> cm.
Proof: First, in order to allow migrationu → x̂,

CA > CAu→x̂ should be satisfied orCA − CAu→x̂ >

0, or ∆CA
u→x̂ > 0. The second requirement is that the

gain of the overall communication cost should compensate
for the migration cost; therefore∆CA

u→x̂ > cm should
be satisfied. According to Eq. (5), the latter is satisfied if
∑

∀z∈Vu
λ(z, u)

(

∑ℓA(z,u)
i=1 ci −

∑ℓAu→x̂ (z,u)
i=1 ci

)

> cm, is
also satisfied and the theorem is proved.

Based on the condition of Theorem 1, the following
migration policy for virtual machines is proposed.
The S-CORE Migration Policy: A VM u migrates
from server σ̂A(u) to another serverx̂, provided that
∑

∀z∈Vu
λ(z, u)

(

∑ℓA(z,u)
i=1 ci −

∑ℓAu→x̂ (z,u)
i=1 ci

)

> cm, is
satisfied.

Apart from the token policy that will be discussed in
the following section, there are some important features of
VM migration that need to be highlighted. In particular, the
condition of Theorem 1 relies on information that is available
locally at a given VMu. First, communication levelℓA(z, u)
for z ∈ Vu requires knowledge of the location ofu and any
VM z ∈ Vu exchanging data with it. This is achieved by
assigning servers IP addresses from a subnet associated with
each rack. A VMu can then probe the network to identify the
number of hops between it and any other VM (i.e., by using
traceroute). This is possible because many aggregate
switches are actually layer 3 switches that respond to ICMP
packets (as do the aggregate and core routers), and the hosting
server is the first hop from a VM, providing enough topologi-
cal information for a VM to accurately identify communication
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levels between itself and any other VM. Link weightsci and
migration costcm are static and can be easily available locally
to each VM. However, traffic loadλ(u, v) is not generally
available, since traffic dynamics are expected to change in the
considered environment. By considering traffic loads over a
time period, the amount of data exchanged between VMu

and VM v can be made available. Assuming that each VM is
capable of monitoring its own incoming and outgoing traffic,
then an estimation of the particular value ofλ(u, v) can be
derived at VMu. Note that this approach, even though subject
to the accuracy of periodical estimations, can adapt to the
dynamic changes of the DC traffic depending on the size of the
temporal window. For the rest of this work, it will be assumed
that VMs are capable of monitoring traffic and derive accurate
traffic load estimations.

From the previous discussion, it becomes obvious that S-
CORE relies on information that is or can become available
at each VM. According to the migration criterion, a VM
may or may not migrate to some other server. If it migrates,
Theorem 1 ensures that the overall communication cost will
be reduced. This local decision that requires local information
and eventually reduces a global cost metric (i.e., the overall
communication cost), is a scalable alternative to the proposed
centralized approach presented in the previous section.

In order to realize the proposed S-CORE, each VM should
be able to support some simple but necessary operations. The
first one is to support the traffic monitoring mechanism and be
able to estimate temporal traffic load. The second is relatedto
the VMs’ ability to migrate, i.e., to move from one server to
another within the DC, undergo configuration activities, etc.
Finally, a mechanism for receiving and sending the token to
the next VM according to the token policy is also required.
The particulars of four distinct token policies employed are
presented in the following section.

V. EVALUATION

A. Token Policies

A first approach for a simple distributed token policy is
to employ a basic round-robin mechanism. Theround-robin
token policypasses the token among VMs based on their IDs
in an ascending order. In particular, starting from the VM with
lowest ID, denoted asv0, the token then passes to VMu such
thatIDv0 < IDu < IDz , for anyz ∈ V\{v0, u}. Let u← v⊕1
denote that VMu is the one that follows VMv, or that there
is no other VMx such thatIDu > IDx > IDv.

From an implementation viewpoint, a token is a message
formed as an array of entries, as depicted in Fig. 2, with each
entry carrying a 32-bit VM ID value, capable of representing
over 4 billion IDs before recycling, and an 8-bit communica-
tion level. Entries are stored in ascending order by VM ID. The
size of the message is of the order of the number of VMs (i.e.,
|V|) in the network. VM ID allocation is normally handled
by a DC VM instance placement manager, which is part of
the underlying DC network fabric. Failure recovery when the
token is lost (due to a process or communication failure)
can be addressed by the classic Gallager, Humblet and Spira

v0

b b b

v0 ⊕ 1 v0 ⊕ (|V| − 1)

Fig. 2: Graphical representation of the token message structure.

distributed leader election algorithm [24] wherein a minimum-
weight spanning tree with a single leader is constructed using
only the local knowledge initially available at nodes.

The basic round-robin policy may not be efficient in all
cases, such as when it is passed to a VM that will not migrate,
wasting an iteration. Aglobal token policycould eliminate this
inefficiency through a centralized process that builds and dis-
tributes the token based on the largest potential communication
cost reduction. Such a policy requires a token holding only the
ordered VM IDs as the communication levels are centrally
determined. However, maintaining global information is a
costly requirement since (i) DCs are typically large-scale; and
(ii) dynamic changes make information previously gathered
over short timescales obsolete. Obviously, adistributed token
policy is needed, based on locally available information.

In our distributed token policy the token passes in a round-
robin manner exclusively among VMs for whom network
communication passes through the highest-layer links in the
network. Links are most costly at this level and it is therefore
reasonable to assume that migration is likely to take place,
greatly reducing the overall communication cost. The highest
communication level is initialized at zero for all VMs. When
the token is held by VMu thenlu can be updated since VM
u is aware of its own highest communication levelℓAu . VM
u is also aware of the communication level of those VMs it
communicates with (i.e.,v ∈ Vu). Therefore, it can update the
corresponding entrieslv ← ℓA(u, v) accordingly. This update
takes place only if the existing estimationlv is smaller than
the new valueℓA(u, v). The token is passed to the next VM at
this communication level, otherwise the token is passed to a
VM at the next lowest level. If no VM suitable for migration
is found, the policy restarts from the VM belonging to the
highest communication level with the lowest ID. The details
of the distributed token policy proposed here are presentedin
Algorithm 1.

A key feature of the distributed token policy is the com-
munication level for VMs. A VM knows only the com-
munication levels between itself and connected VMs. The
approach followed here is based on anestimation of the
highest communication leveldenoted bylu, the 8-bit value
carried within the token message entries (see Fig. 2). The
communication level is determined usingtraceroute to
map the hops between two VMs, as described in Section IV.

We also present aload-aware token policyvariant of our
distributed token policy, which considers the aggregate net-
work load (incoming and outgoing) for each VM. VMs at the
same communication level, but with higher aggregate load,
receive the token first, requiring only a small number of extra
comparisons for the token passing decision than the distributed
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Algorithm 1 Distributed Token Policy

1: cl← lu ⊲ cl maintains the current value oflu
2: found← FALSE ⊲ Flag regarding next VM

3: for ∀v ∈ Vu do ⊲ Update VMs connected tou
4: if lv < ℓA(u, v) then
5: lv ← ℓA(u, v)

6: z ← u⊕ 1 ⊲ Pick the next VM afteru
7: while cl ≥ 0 && !found do
8: while lz 6= cl do
9: z ← z ⊕ 1 ⊲ Pick the following VM

10: if lz ← cl then
11: found← TRUE ⊲ Next node is found
12: else ⊲ Next node is not found at this level
13: cl← cl− 1 ⊲ Go to a lower level
14: z ← v0 ⊲ and start from the beginning

15: if !found then ⊲ No unchecked VMs are left
16: Pick VM z : minIDx{∀x ∈ V : lx = max∀v∈V(lv)}

17: Sendtoken to VM z

token policy.
Simulation results in Section V-D reveal the performance

and communication cost reduction of each of the four algo-
rithms discussed.

B. Experimental Setup

We have simulated the communication cost reduction VM
migration algorithms on the DC topology depicted in Fig. 1
using thens-3 network simulator [25].

In our simulation environment, a single VM is modeled as
a socket application which communicates with one or more
others in the network. Similar to actual virtualization, each
server has a VM hypervisor network application to manage
a collective number of VMs, supporting in-migration (when
one or more VMs move into a server) as well as out-migration
(when one or more VMs move out of a server). The simulated
topology is comprised of 2560 hosts (128 ToR switches, 20
hosts per rack). The topology can fully capture hierarchical
link oversubscription at aggregate and core links. Hence,
results yielded from this topology should scale to current DC
network topologies, consisting of tens of thousands of servers,
without loss of generality.

Each host can accommodate at most 16 VMs, to model
a typical commodity DC server’s capability. Assuming each
server is equipped with 16GB RAM and 8 cores, 16 VMs can
safely operate concurrently with 2 VMs per core and each
VM occupying 1GB of RAM. Our simulated DC topology
can accommodate up to2, 560×16 = 40, 960 VMs.

During the simulation, each VM has 10 random outgoing
connections, giving on average 20 bidirectional connections
per VM. We have considered practical bandwidth limitations
such that the aggregate bandwidth required by all VMs in a

host does not exceed the network capacity of the physical
host. Therefore, a VM migrates only when Theorem 1 is
satisfied and the target host has sufficient system resources
and bandwidth to accommodate it.

The four token policies discussed in Section V-A have been
implemented and evaluated on our topology under varying
aggregate DC load. We have defined the load level as the ratio
of aggregate throughput of all VMs to the overall topology
capacity, considering light (30%), medium (50%) and heavy
(70%) topology load. We also simulated a scenario where the
number of VMs per host and number of outgoing connections
per VM are randomly generated, resulting in an aggregate
traffic load of approximately 40%, halfway between the light
and medium loads. We assume the link weight cost,ci, will
grow exponentially for each layer, so we setc1 = e0, c2 = e1,
c3 = e3 and c4 = e5. Migration cost cm, is set to zero
for the time being to allow for a fair comparison among the
centralized approach and S-CORE. However, as a DC operator
may wish to associate a cost with migration, e.g., for each VM
moved outwith an upper limit within a given time period, so
as to limit negative effects of migration, results for various
values ofcm are presented later.

C. Computation of Centralized Optimal Values

In order to benchmark the performance of S-CORE, having
an optimal value based on global knowledge of the traffic
dynamics is important. However, an exhaustive search across
all permutations to find the optimal distribution of VMs that
minimizes the overall communication cost for the topology
is computationally prohibitive. For example, assuming com-
munication happening within a rack has a cost of zero, with
16×20=320 VMs per rack it will need to explore at least
(40,960320 ) combinations. We have therefore employed a more
tractable heuristic search alternative, using a genetic algorithm
(GA). Our GA has been implemented as part of the ns-
3 library to compute approximate values for the simulation
scenarios. Observing that VMs densely packed into racks
minimizes the communication cost by exploiting locality, we
assume that the optimal distribution(s) exists as a densely-
packed VM distribution. The GA starts with a population
consisting of1, 000 individuals representing densely-packed
VM distributions, each of which may or may not be an
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Fig. 4: Convergence time and communication cost reduction with respect to approximate values for different token policies when aggregate
DC utilization is (a) 30% (light) (b) 50% (medium) (c) 70% (high) (d) approx. 42% when number of VMs per host is randomly generated
(e) ratio of migrated VMs with respect to all VMs in the network after each iteration during migration and (f) CDF of no. VMsper host at
different timestamps during migration for randomized scenario using the distributed token policy.

optimal solution (of VM assignments) to the problem. The
crossover operator has been implemented using edge assembly
crossover (EAX) and the replacement of individuals is based
on tournament selection. Mutation happens by swapping a
random number of VMs between racks. The GA stops when
there is no significant improvement in communication cost
reduction (< 1%) in 10 consecutive generations. Execution
time over our medium loading simulation setup is almost 12
hours using a system with 8GB RAM and a 2.66GHz quad-
core CPU.

D. Experimental Results

We show in Fig. 3 the reduction of high level communi-
cation links for the centralized approach derived by the GA.
This approach significantly reduces the use of the expensive,
highest-level communication links from 50% to 2% of overall
links. It must be noted that while the number of level 4 links
is reduced, the number of level 3 (and lower) links increases.
This is due to the number of randomly-instantiated connections
per VM which creates a large mesh-like network, limiting
further possible reduction after most communication over level
4 links has already been shifted to level 3 links and lower links.

Performance results of S-CORE are shown in Fig. 4. Figs.
4a – 4d reveal the convergence time and the ratio of commu-
nication cost reduction (with respect to optimal cost) achieved
under light, medium, heavy and randomized network loading
with the four different token policies. The simulation results
demonstrate that S-CORE can greatly reduce the communica-
tion cost by as much as 90% of the optimal approximation in

all scenarios, using only local performance information readily
available at each VM. In all four scenarios, we found that the
global token policy constantly exhibits best performance in
terms of convergence speed and proximity to the optimal cost.
However, it requires global knowledge of the traffic dynamics
and can therefore be prohibitively expensive to implement in
practice, even under a distributed migration algorithm. The less
expensive distributed and load-aware token passing policies
produce highly comparable performance to the global one. The
basic round-robin policy exhibits the longest convergencetime
and largest difference from the approximate of the optimal
amongst all four token passing policies. All token policies
converge and stabilize when the VM distribution considerably
reduces the overall communication cost. As it can be seen
from Fig. 4a, the communication cost reduction achieved by
S-CORE is as high as 90% of the approximation. Even when
the aggregate load increases to 40% or 50% of the overall
topology capacity, the communication cost reduction remains
as high as 80% and 76%, as shown in Fig. 4b and Fig. 4d,
respectively.

Fig. 4c demonstrates that while centralized and round-robin
policies remain the best and worst approaches, respectively, for
a heavily-loaded topology they deviate from the approximation
by 18% and 26%, respectively. Interestingly, while the load
aware token policy converges faster in the first 40 seconds than
the distributed policy, it stabilizes with 3% less of a reduction
cost. Moreover, it is shown in Fig. 4e that, when using S-
CORE, the ratio of migrated VMs plummets after the second
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Fig. 5: (a) Random VM distribution with dynamic traffic flow (b) Ratioof communication cost reduction with the distributed tokenpolicy
(c) Ratio of migrated VMs under various threshold settings with the distributed token policy and (d) Randomized scenario in Fat Tree (k=16)
topology.

sequential token-passing iteration. This demonstrates that S-
CORE quickly converges to a stable VM distribution within
two token-passing iterations.

S-CORE aims to cut communication costs by migrating
VMs to reduce the number of traffic flows routed through
upper tiers in the network. Fig. 4f visualizes the change
of VM distribution over time for the randomized scenario
when using the distributed token policy. Initially, VMs are
randomly generated and distributed over all hosts. As time
passes, the CDF curve of the VM distribution rotates clockwise
and becomes flatter. This implies that a significant fractionof
VMs are being clustered together in certain racks. Eventually,
only 56% of servers are hosting VMs, leaving 44% idle. An
obvious advantage of the locality property of S-CORE is that
these idle servers can be powered down to reduce the energy
consumption of the DC, addressing the aims of studies on
partial shutdown of servers or network elements [13][22][26].

In the above scenarios, we have assumed that pairwise VM
traffic flows remain intact throughout the simulation. However,
in practice, traffic flows over a DC topology are much more
bursty and dynamic. To have an insightful performance in-
dicator of how S-CORE copes with dynamic traffic, we have
implemented a dynamic scenario by increasing and decreasing
traffic flows to some VMs in the fully randomized setup
while the migration algorithm operates. The results in Fig.5a
demonstrate that S-CORE can still adapt and converge quickly,
even with dynamic traffic flows.

S-CORE is designed to work for various migration costs
cm because some migrations should not be allowed if the
migration cost outweighs the gain. Clearly, the results shown
in Fig. 5b and Fig. 5c illustrate that, as the weighting of
cm increases, fewer VMs are migrated. This was evaluated
using the distributed token policy but it generalises to all
token policies in S-CORE. Interestingly, we also found thatby
increasingcm from zero to1×105, the ratio of migrated VMs
with respect to all VMs in the network has greatly dropped
from 98% to 67% whereas the ratio of communication cost
reduction just slightly deteriorates by 2%, from 78% to 76%.
However, the communication cost reduction plunges sharply
if we further increasecm beyond1×105. This phenomenon
demonstrates that only a small fraction of VM migrations
attribute significantly to a major reduction in communication
cost, and having the flexibility to setcm is important for

network operators.
We have also implemented and simulated S-CORE for a

fat tree topology (k=16, 1024 servers) under the randomized
scenario. The fat tree topology differs from our topology,
illustrated in Fig. 1, as it is a multi-rooted tree with a highest
communication level of 2. Clearly, Fig. 5d illustrates that
the fat tree topology exhibits significant communication cost
reduction. Despite a lower saving in communication cost when
compared to the legacy tree topology in Fig. 4d, it is essential
to note that our low-cost S-CORE algorithm can be success-
fully applied to other DC topologies. We therefore believe
that S-CORE can be effectively utilised in any DC network
topology where there is a cost associated with communication
over particular links.

VI. RELATED WORK

Existing work has covered the areas of VM placement,
migration and consolidation. VM placement tackles the prob-
lem of where to locate VM images in a DC when they are
initially instantiated. Studies have addressed VM placement
by solving sets of resource constraints [21], minimising the
overall DC network cost matrix [8] and limiting thermal
dissipation in the DC [27]. VM live migration [7] is typically
employed to ensure VM performance, or some other system-
side metric such as power usage, is not negatively impacted
as conditions in the DC change over time, such as servers
becoming overloaded [12]. Consolidation is the activity of
reducing the number of servers on which VMs are hosted,
often to achieve power savings [13][20], and is typically
achieved via VM migration.

Further works addressing the problem of DC power re-
duction consider historical usage data during the consoli-
dation processs [14] and make more effective use of the
resources of consolidated servers that must remain powered
on [15]. Service-level agreement (SLA) violation avoidance is
also widely studied through the use of targeted VM migra-
tion [28][29], although the impact of migration itself on SLAs
must be considered [13] or modeled [30]. Consolidation while
meeting SLAs can be achieved by forecasting based on usage
traces [14][16].

The migration techniques discussed above all make use
of system-side performance metrics for migration decisions.
Network-based migration studies address how to reduce the
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number of network switches that must be powered on [22],
meet SLAs by considering bandwidth consumption dur-
ing migration [28] and balance network load by migrating
VMs based on bandwidth utilisation statistics collected from
switches [9]. Our work differentiates from these by addressing
the problem of reducing the overall communication cost within
the DC network.

VII. C ONCLUSION

Machine virtualization is a powerful mechanism for Cloud
providers to shape and control server load over their under-
lying DC infrastructures. However, virtualization can itself
have a significant impact on the network dynamics of the
topology, causing highly unpredictable traffic patterns and
temporal congestion, especially over the core links [11][17].
Although the bottom layers of DC infrastructures consist of
commodity server and switching equipment, network inter-
faces at the aggregation and core layers can be significantly
more expensive and therefore much harder to upgrade. Also,
congestion at the core layers affects a larger fraction of the
overall DC performance.

In this paper, we have formulated a centralized approach
for dynamic VM allocation in order to minimize an overall
communication cost function. This centralized approach isof
high complexity requiring global information, and it is there-
fore not scalable for the inherently dynamic DC environments.
Hence we have proposed S-CORE, a distributed approach
that migrates VMs from one server to another based on local
information. We have evaluated S-CORE by considering four
token policies and demonstrated that we can achieve up to
90% communication cost reduction when compared to the
centralized approach. We have also shown that S-CORE can be
equally applied to less hierarchical DC network architectures
(e.g., Fat-Tree), constituting to S-CORE being a particularly
suitable approach for scalable communication cost reduction
in current and future DC environments.
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APPENDIX

We show that the Optimal VM Allocation (OVMA) prob-
lem at hand does not have a polynomial time solution.OVMA

is not a decision problem but rather a typical optimization
one, where the optimization goal is to compute whether there
is a quantityA so that Eq. 2 is less than or equal to a
target valueJ . We simplify the problem by considering only
one communication link with costc1. In the sequel, we will
show thatOVMA ∈ NP and then we reduce a known NP-
Complete problem toOVMA in polynomial time [31] (or in
logarithmic space [32]).

In order to show that an optimization problem is inNP ,
the traditional way is to show that the following property is
satisfied: for each “yes” instance there exists a “proof” or
“certificate” of polynomial size, whereas “no” instances have
no polynomial “certificates”.OVMA has this property since
the certificate is an allocationA which is polynomial in the
size of the input and it exists if and only if this allocation
achieves the goalJ .

The next step is to reduce a known NP-complete problem
to OVMA. Note that a problemX is at least as hard as
problemY , if Y reduces toX , [31], [32]. We will consider the
Graph Partitioning (GP ) problem [31] which will be reduced
to OVMA. For completeness,GP is stated below:

INSTANCE: GraphG = (V,E), weightsw(v) ∈ Z+ for
eachv ∈ V and l(e) ∈ Z+ for eache ∈ E, positive integers
K andJ .

QUESTION: Is there a partition ofV into disjoint sets
V1, V2, . . . , Vm such that

∑

v∈Vi

w(v) ≤ K

for 1 ≤ i ≤ m and such that ifE′ ⊆ E is the set of edges
that have their two endpoints in two different setsVi, then

∑

e∈E′

l(e) ≤ J ?

In our reduction we shall use the version ofGP with vertex
weight 1, which is still NP-Complete forK ≥ 3 (can be solved
in polynomial time whenK = 2 by matching [31]). Consider
the following straightforward reduction:

• the set of VMsV is V , i.e.,V = V = {v1, v2, . . . , vn},
• the traffic loadλ(u, v) between VMsu andv is defined

as follows:λ(vi, vj) = l(e), if in the undirected graphG
there exists an edgee betweenu and v and is taken to
be 0 if there is no edge betweenu andv in G,

• K ∈ Z+ is the rack capacity, i.e., how many virtual
machines a rack may accommodate,

• the fact that the vertex weights are taken to be 1 satisfies
the assumption that all VMs are equivalent in weight,

• the goalJ ∈ Z+ for OVMA is precisely the goalJ of
theGP , and

• the original question whether there is a partition ofV into
disjoint setsV1, V2, . . . , Vm now becomes the question
whether there is an allocation of virtual machines to racks
r1, r2, . . . , rm.

The above reduction is trivial and can be carried in poly-
nomial time. Therefore,GP with vertex weight 1 reduces
polynomially to OVMA, which completes the proof that
OVMA is NP-Complete.


