
Modest BBR: Enabling Better Fairness for BBR
Congestion Control
Yuxiang Zhang∗, Lin Cui∗, Fung Po Tso†

∗Department of Computer Science, Jinan University, Guangzhou, China
†Department of Computer Science, Loughborough University, LE11 3TU, UK
Email: samuelzyx0924@gmail.com; tcuilin@jnu.edu.cn; p.tso@lboro.ac.uk;

Abstract—As a vital component of TCP, congestion control
defines TCP’s performance characteristics. Hence, it is important
for congestion control to provide high link utilization and low
queuing delay. Recent BBR tries to estimate available bottleneck
capacity to achieve this goal. However, its aggressiveness char-
acteristics generate a massive amount of packet retransmission
which harms loss-based congestion control protocol such as
Cubic. In this paper, we first dive into this issue and reveal
that the aggressiveness of BBR can degrade the performance
of Cubic, as well as the overall Internet transmission. Then
we present Modest BBR, a simple yet effective solution based
on BBR, by responding to retransmission less aggressively.
Through extensive testbed experiments and Mininet simulation,
we show Modest BBR can preserve high throughput and short
convergence time while improve the overall performance when
coexisting with Cubic. For example, Modest BBR gets similar
throughput compared to BBR, while it improves 7.1% of the
overall throughput and achieves better fairness to loss-based
schemes.

Index Terms—Congestion control, Retransmission, Inter-
protocol fairness

I. INTRODUCTION

Congestion control protects the Internet from persistent
overload situations and provides high utilization and low queu-
ing delay. Since its invention and Internet-wide deployment,
congestion control has grown out of its infancy, but is still a
hot topic of today’s research. In general, congestion control
mechanisms try to determine a suitable amount of data to
transmit at a certain point in time in order to utilize the
available transmission capacity, but also to avoid a persistent
overload of the network [1][2]. BBR [3], which was proposed
and developed by researchers in Google recently, determines
the pacing rate based on bandwidth-delay product (BDP).
With extensive experimental evaluations, it is demonstrated
that BBR can achieve high throughput and low latency [3].
Some studies show that BBR work quite well for a single
flow at a bottleneck [1][3][4].

However, it is observed that BBR can lead to the problem
of a massive amount of packet retransmission [1][5]. BBR’s
mechanism inherently leads to a sustained overload of the
bottleneck, resulting in a steadily increasing amount of inflight

Corresponding author: Dr. Lin Cui
This work has been partially supported in part by Chinese National

Research Fund (NSFC) No. 61772235 and 61402200; the Fundamental
Research Funds for the Central Universities (21617409); the UK Engineering
and Physical Sciences Research Council (EPSRC) grants EP/P004407/2 and
EP/P004024/1.

data, queuing up at the bottleneck buffer and occurring exces-
sive retransmission. Besides, BBR has no mechanism to drain
this unintentionally built-up queue, except ProbeRTT which
is triggered at a preset period [1][3]. On the other hand, loss-
based congestion controls (e.g., Cubic [6], BIC [7]) are widely
deployed in Internet service which are sensitive to packet
retransmission. Cubic is very popular and configurated as the
default congestion control in Linux. Nevertheless, with such
considerable retransmission, the effect of the presence of BBR
on loss-based schemes’ performance remains unclear.

Hence, with extensive testbed experiments, we unveil that
the performance of Cubic is degraded sharply when competed
with BBR. Our experiments demonstrate: 1) Overwhelming
throughput. BBR does maintain high throughput for data
transfer, but it would suppress Cubic’s performance and cause
unfairness; 2) Overmuch retransmission. With the aggressive
mechanism, BBR can occupy most of bottleneck’s capacity
and would eventually saturate the bottleneck and cause Cubic
flow experiencing massive retransmission either.

Motivated by aforementioned issues, we seek for a solution
that can preserve the good properties of BBR, while alleviate
the degradation of performance on other coexisting congestion
congestion schemes, e.g., Cubic. To this end, we present
Modest BBR, a simple yet effective solution that achieves our
goal. First, Modest BBR would response to retransmission in a
moderate way, rather than too aggressive like BBR. It would
adjust its pacing rate according to the network congestion.
Then, at its heart, Modest BBR sacrifices a small amount of
bandwidth compared to BBR and maintain a relatively high
throughput.

The main contributions of this paper are as follows:
1) We designed Modest BBR, which is a variant of BBR

with similarly high throughput, but more amicable by
adjusting pacing rate based on both on packet retrans-
mission and bottleneck capacity.

2) A prototype of Modest BBR is implemented based on
Linux kernel 4.14. Modest BBR is light-weighted and
effective, containing only about 100 lines of code, and
pluggable into Linux kernel.

3) Extensive test-bed experiment results show that Mod-
est BBR achieves comparable throughput compared to
BBR, while improving overall throughput by 7.1% and
offering better fairness when coexisting with loss-based
mechanisms.

H1

H2

H3

H4

S1 S2

Flow 1

Flow 2

Bottleneck

Fig. 1. Standard dumbbell topology with two senders and two receivers.

Time (s)

60 120 180 240 300 360 420 480 540 600

T
h

ro
u

g
h

p
u

t
(M

b
it

s
/s

)

20

40

60

80

100
Cubic1

Cubic2

Overall

(a) Two Cubic flows

Time (s)

60 120 180 240 300 360 420 480 540 600

T
h

ro
u

g
h

p
u

t
(M

b
it

s
/s

)

20

40

60

80

100

BBR

Cubic

Overall

(b) One Cubic and one BBR.
Fig. 2. The Performance of Cubic and BBR when they coexist

The remainder of this paper is organized as follows. We
present our motivations for this research in Section II. We
describe the design of Modest BBR in Section III, followed
by presenting the evaluation Modest BBR in both testbed and
simulation environments in Section IV. Related works are
surveyed in Section V. Finally, we conclude the paper in
Section VI.

II. MOTIVATION

Many studies have shown BBR congestion control would
introduce considerable packet retransmission [1][3]. On the
other side, Cubic, the default congestion control in Linux
kernel, is a loss sensitive scheme which would degrade its
performance when encountering lots of retransmission. Thus,
a key question arises: Does Cubic degrade its performance
with the presence of BBR?

In order to quantify such impairment, we built a small
testbed consisting of 4 Linux 4.14 servers connected to two
routers, as shown in Figure 1, and generated flows using iperf3
from H1 and H2 to H3 and H4 respectively.

A. Impact on throughput

First, we compared the throughput of one Cubic flow and
one BBR flow (depicted in Figure 2(b)) and the throughput of
two Cubic flows (depicted in Figure 2(a)). Besides, these two
groups of flows would share the bottleneck capacity respec-
tively. And we also measure the overall performance which is
also shown in both figures respectively. From the Figure 2(b),
it is clear that BBR outperforms Cubic. The throughput of
BBR achieve almost 13X compared to Cubic’s performance
(around 88.1Mbits/s to around 6.3 Mbits/s). BBR’s aggressive-
ness help it obtain most of the bottleneck capacity. Meanwhile,
without the presence of BBR flow, both two Cubic flows
can get about 36 Mbits/s throughput shown in Figure 2(a),
which compete for bottleneck capacity. By comparing these
two figures, we can conclude that Cubic is affected by BBR
heavily (around 36 Mbits/s to 6.3Mbits/s). Moreover, the
average throughput of each flows above which we repeated
this experiments ten times is depicted in Figure 3. Clearly, the
presence of BBR lead to worse Cubic’s performance. To be

Congestion Controls

Cubic1 Cubic2 BBR Cubic

T
h

ro
u

g
h

p
u

t
(M

b
it

s
/s

)

0

20

40

60

80

100

Fig. 3. The average throughput of each flow.

more specific, the overall throughput for the group of BBR
flow and Cubic flow is up to 91.7 Mbits/s, while the total
throughput of two Cubic flows is up to 74.1 Mbits/s.

Next, we trigger one cubic flow and one BBR flow which
start at 0s and 300s respectively and last for 600 seconds.
As we can see from Figure 4 that, in the first 300 seconds,
Cubic can obtain quite high throughput while get relatively
low throughput in later 300 seconds when BBR flow involved
(from about 90Mbits/s to around 6.2Mbits/s). Hence, the
degradation of Cubic’s performance is demonstrated that is
caused by the presence of BBR.

Observation 1. The throughput of Cubic is overwhelmed by
BBR.

B. Impact on retransmission

Thus, as Cubic is a loss-based scheme, a simple idea arises
in our mind: does BBR introduces massive retransmission so
that degrade Cubic’s performance? In order to testify our guess
and quantify the cause of such phenomenon, we measured
the number of retransmission of each flows with repeating
triggering both one Cubic flow and one BBR flow and two
Cubic flows respectively.

Figure 5 and Figure 6 show the results. From Figure 5, we
can observe that the retransmission of BBR flow arrives at
3X compared to Cubic flow’s (around 1600 per 30 seconds to
around 600 per 30 seconds) in whole experimental period.
Meanwhile, when only Cubic flows exist, the numbers of
retransmission of both flows are just around 250 every second.
Besides the average of ten runs is depicted in Figure 6. Clearly,
retransmission of Cubic flows with the presence of BBR flows
is larger than the opposite (1600 per 30 seconds to 615 per
30 seconds).

Thus, since BBR’s pacing rate would not be affected
by retransmission signal, their aggressiveness would help
it obtain higher throughput. However, the large amount of
retransmission which BBR creates and occupying most of
the bottleneck bandwidth, thereby does affect Cubic flows
which treats them as congestion signal. Therefore, overmuch
retransmission introduced by BBR flow is the main cause of
degradation of Cubic’s performance.

Observation 2. Cubic causes massive retransmission because
of BBR’s aggressive meachanism.

Time (sec.)

30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600

T
h

ro
u

g
h

p
u

t
(M

b
it

s
/s

)

10

20

30

40

50

60

70

80

90

100

BBR

Cubic

Overall

Fig. 4. Cubic starts at the beginning and BBR starts at 300s.

Time (s)

60 120 180 240 300 360 420 480 540 600

#
 o

f
P

a
c

k
e

ts
 R

e
tr

a
n

s
m

it

500

1000

1500

2000

2500

BBR

Cubic

Overall

(a) One Cubic flow and one BBR flow.

Time (s)

60 120 180 240 300 360 420 480 540 600

#
 o

f
P

a
c

k
e

ts
 R

e
tr

a
n

s
m

it

200

300

400

500

600

Cubic1

Cubic2

Overall

(b) Two Cubic flows
Fig. 5. The packet retransmission of Cubic and BBR when they coexist

III. Modest BBR DESIGN

A. Design Goals

Motivated by the above problems, we aim to design a
moderately aggressive, BBR based scheme for alleviating the
degradation of Cubic when coexisting with Cubic with the
following properties:

• Less aggressive: Our scheme should alleviate the degra-
dation of Cubic’s performance when they coexist. In
the other word, we need a BBR which is sensitive to
loss either and reduces several orders of magnitude of
retransmission.

• High throughput: Our scheme should maintain a rel-
atively high throughput as BBR does, though it can
sacrifice a small amount of throughput. Meanwhile, it
should be able to fully utilize the network capacity as
highly as possible.

• Readily deploy: Our scheme should be compatible to
current OS kernel as well as deployed into a commodity
web server easily.

B. Modest BBR Mechanism

After understanding the existing BBR-Cubic coexistence
problem, we revisit the design of BBR congestion control
that it is too aggressive when the bottleneck is fully utilized,
which causes the inter-protocol unfairness. We note that too
much retransmission is the core issue. Hence, merging loss-
sensitive approach into BBR congestion logic is a plausible
solution. Here, we propose a Moderately aggressive BBR
congestion control, Modest BBR, for alleviating retransmission
and better inter-protocol fairness. The core idea of our Modest
BBR is sacrificing a small amount of bandwidth for alleviating
retransmission and moderate aggressiveness, in order to obtain
better fairness with loss-sensitive approaches (e.g., Cubic). In
other word, the core idea can be described as equation 1. In
BBR’s implementation, the size of inflight packets is equal
to BtlBw × RTprop. Thus, we decrease this pacing rate to
BtlBw×RTprop×Proportion which Proportion is a decimal

Congestion Controls

Cubic1 Cubic2 BBR Cubic

#
 o

f
P

a
c

k
e

ts
 R

e
tr

a
n

s
m

it

0

500

1000

1500

2000

Fig. 6. The average number of retransmission of each flow.

between 0 to 1. By using such decreasing approach the pacing
rate can be less aggressive.

Pacing rate = BtlBw ×RTprop× Proportion (1)

Next, we would detail how to compute a suitable Pro-
portion. Here, similar to BIC [7], binary search phase and
linear increase phase are adopted. At binary search phase, we
view computing Proportion as a searching problem in which
network gives yes/no feedback through retransmission as to
whether the current pacing rate (or window) is too aggressive.
The starting points for this search are based on Wmin and
Wmax

1. Specifically, Wmax represents the upper bound of
Proportion while Wmin is the lower bound. Later, this phase
repeatedly computes the midpoint between Wmax and Wmin,
sets the current window size to the midpoint and checks for
feedback. Based on this feedback, the midpoint is taken as the
new Wmax if retransmission occurs and as the new Wmin if
not. The process repeats until the difference between Wmin

and Wmax falls below a preset threshold, called the minimum
increment (Smin).

At linear increase phase, Modest BBR would increase the
pacing rate (or window) in a linearly additive strategy. If no
retransmission occurs, window would be increased linearly in
step Smin. Otherwise, Modest BBR would fall back to binary
search phase.

We present the pseudo-code of Modest BBR in Alg. 1 which
is implemented as a modification of BBR congestion control
and the parameters in Table I are used in the Modest BBR
congestion control. Especially, Modest BBR only works on
the steady phase of BBR since BBR flow spends the vast
majority of its time and modifying window size in other
phases would impact on bottleneck capacity measurement.
Furthermore, once entering the Modest BBR mechanism, the
current window size would be stored in last cwnd (in Alg. 1
line 3). While switching to other phases except steady phase,
the window size would be restored to last cwnd.

C. Parameters selection

First, we discuss some parameters’ value setting. The first
one is Wmax. If setting Wmax larger than 1, which means the
outcome congestion window would be larger than the BBR’s,
would risk congestion leat to “bufferbloat” [8]. Otherwise,

1Although, Alg. 1 do the binary search based on min win and max win
rather than Wmin and Wmax, the purpose of Alg. 1 is to find a appropriate
proportion either

TABLE I
Modest BBR CONGESTION CONTROL PARAMETERS

Parameter Description
Wmin Minimum window scale factor
Wmax Maximum window scale factor
max win Upper bound of window size in binary search phase
min win Lower bound of window size in binary search phase
bin p Indicating in binary search phase
add p Indicating in linear increase phase
Smin the minimum increment step

Algorithm 1 Modest BBR Congestion Control
1: if retransmission occurs and bin p = 0 then
2: bin p = 1, add p = 0
3: last cwnd = cwnd
4: min win = cwnd ∗ wmin

5: max win = (cwnd+min win)/2
6: cwnd = max win
7: else if bin p = 0 then
8: if retransmission occurs then
9: max win = (max win+min win)/2

10: cwnd = max win
11: else
12: min win = (max win+min win)/2
13: cwnd = min win
14: end if
15: if (max win−min win) <= Smin then
16: add p = 1
17: bin p = 0
18: end if
19: end if
20: if add p = 1 and cwnd <= last cwnd then
21: for each ACK do
22: cwnd = cwnd+ Smin

23: end for
24: end if

if setting Wmax smaller than 1 may not approximate the
optimal utilization. Next, we discuss the value of Wmin. Wmin

determines the lower bound of binary search phase, thus,
finding an appropriate value is quite important for alleviating
retransmission. If Wmin is set to a very low value, the binary
search phase would be prolonged and affect the convergence.
Meanwhile, if Wmin is set to a relatively high value, it may not
be a retransmission free value which is useless for alleviating
retransmission. Besides, with this Wmin, Modest BBR would
oscillate between binary search phase and linear increase
phase. Hence Wmin’s setting is relatively important. Further-
more, Smin relates to the aggressiveness in linear increase
phase. If Smin is set to a very low value, the procedure of
approximating the actual network capacity would be prolonged
and affect the performance. Meanwhile, if Smin is set to a
relatively high value, it may fill the bottleneck buffer with the
excess data which would result in packet retransmission. Thus
Smin is vital for interacting with changing network condition.

In current Modest BBR’s implementation, Wmax is set to 1

since BBR is good at measuring bottleneck capacity. Besides,
line 20 in Alg. 1 restrains the pacing rate cannot be larger than
BBR estimated. Wmin is set to be 0.75 which is the value
of the cwnd gain in drain phase of BBR. This is a heuristic
setting. And Smin is set to be 1, which is a conservative value.
We want Modest BBR would reduce retransmission effectively.
Besides, We leave optimal parameters tuning as an important
future work.

D. Convergence and intra-protocol fairness

Then we briefly discuss the intra-protocol fairness of Modest
BBR. Let’s consider n Modest BBR flows, which share the
same bottleneck. As the original BBR paper [3] demonstrated
that BBR flows can learn their bottleneck fair share, these n
flows can converge to fair share before entering binary search
phase and linear increase phase. Next, once the bottleneck is
overloaded, the congestion information would be transmitted
to each sender through occurring retransmission. Since all
flows encounter the same shortage of bottleneck capacity, these
n flows would receive the same amount of retransmission
signal. Thus, these n flows may experience similar both binary
search phase and linear increase phase processing. Therefore,
these n would get similar congestion control value or converge
to the fair share.

IV. EVALUATION

A. Experimental Setup

Most experiments are conducted on a physical testbed with
4 HP Z230 workstations (4-core Intel i7-4790 3.6GHz CPU
and 16 GB memory as well as 100M NIC). Our switches are
Huawei HG255d, each with a buffer of 32MB shared by four
100M ports. Besides, 5 client machines are adopted for evalu-
ating the performance in real network. These VMs located in
Singapore (Sin), Shenzhen (SZ), Beijing (BJ), London (Lon)
and New York (NY). The Mininet simulation is conducted
on one of the workstations, which runs Linux Kernel 4.14.
Furthermore, Apache2 is deployed on this workstation for
offering web service.

We run Linux kernel 4.14 which implements BBR
and Cubic as a pluggable module. We set tcp sack and
tcp low latency to 1 and increase the maximum receive and
send window sizes of TCP up to 16MB, to support experiments
for getting rid of buffer insufficiency. Results are obtained with
MTU sizes of 1.5KB, as current desktop networks typically
use this setting. Moreover, we enabled the queuing discipline
“fq” at senders which BBR implements its packet pacing
feature based on it. Besides, “fq” was not enabled for flows
of Cubic.

To understand Modest BBR performance, three different
congestion control configuration are considered: Cubic, BBR
and Modest BBR. Meanwhile, the overall performance of one
Modest BBR flow and one Cubic flow would be compared
to the two group flows evaluated in section II. The overall
performance of two Cubic flows is denoted as “Overall*” and
“Overall+” represents the overall performance of one BBR
flow and one Cubic flow.

Receiver

Fig. 7. Multi-hop, multi-bottleneck (parking lot) topology.

Clients

Sin SZ BJ Lon NY

A
v

e
ra

g
e

 T
p

u
t

(M
b

it
s

/s
)

0

2

4

6

8

10

12 Modest

BBR

Cubic

(a) Average throughput.

Clients

Sin SZ BJ Lon NY

A
v

e
ra

g
e

 T
C

T
 (

s
)

0

200

400

600

800

1000
Modest

BBR

Cubic

(b) Average TCT
Fig. 8. The Performance of Modest BBR, BBR and Cubic

The main metrics used are: Transfer completion time (TCT,
measured by CURL), Throughput (measured by CURL or
iperf) and the number of retransmission (measured by CURL).
To be more specific, TCT is measured for 100 MB data trans-
fer. Fairness to inter-protocol and convergence experiments are
conducted on topologies shown in Figure 1 (physical testbed
experiment) and Figure 7 (Mininet [9] based simulation),
respectively.

B. Performance in real network

We first evaluate Modest BBR’s performance in Internet
circumstance. We deployed one Apache2 web server in our
laboratory (Guangzhou, China) and instructed all clients to pull
100 MB data from web server simultaneously. Figure 8 shows
the average throughput and TCT of these three congestion
controls and the results presented are averaged over 10 runs
of each congestion control. From the figure, we can tell
that Modest BBR and BBR outperform Cubic. BBR gets the
best performance and Cubic obtain the worst among three
congestion controls. In addition, Modest BBR and BBR can
achieve up to 23.8% and 27.8% higher throughput compared
to Cubic, respectively. Furthermore, Modest BBR can reduce
the average TCT by up to 25.8% compared to Cubic, while
BBR can reduce about 27.4% average TCT.

Both Modest BBR and BBR function under the mechanism
which continually measures bottleneck capacity. Hence they
can achieve good TCT as well as high throughput in all clients’
network environments. Besides, the performance gap between
Modest BBR and BBR is relatively small which Modest BBR
just get 3% lower throughput and 7% larger TCT compared to
BBR. In other word, the amount of performance Modest BBR
sacrifices is relatively small and acceptable.

C. Fairness to inter-protocol

The inter-protocol fairness in sharing the bottleneck band-
width between two competing flows are measured with the
similar setting. Resutls are shown in Figure 9 ∼ Figure 12.

As Figure 9(a) shows, Cubic can increase almost 4X
throughput (around 39.5 Mbits/s to 6.3 Mbits/s) when coexists

Time

60 120 180 240 300 360 420 480 540 600

T
h

ro
u

g
h

p
u

t
(M

b
it

s
/s

)

20

40

60

80

100

Modest BBR

Cubic

Overall

(a) One Modest BBR and one Cubic.

Time (s)

60 120 180 240 300 360 420 480 540 600

T
h

ro
u

g
h

p
u

t
(M

b
it

s
/s

)

20

40

60

80

100

BBR

Modest BBR

Overall

(b) One Modest BBR and one BBR.
Fig. 9. The Performance of Modest BBR, Cubic and BBR when they coexist

Congestion Controls

Cubic Modest BBR BBR Modest BBR* Overall Overall* Overall+

T
h

ro
u

g
h

p
u

t
(M

b
it

s
/s

)

0

20

40

60

80

100

Fig. 10. The average throughput of each flow.

with Modest BBR compared to Figure 2(b) which Cubic
coexists with BBR. Meanwhile, Modest BBR achieves 3X
throughput compared to Cubic. Figure 10 shows the average
throughput of each flow and the overall of different flow group.
The overall throughput of this group, which achieves 3.8%
higher than sum of Cubic flow and BBR flow (Overall+) and
28.3% higher than the total of two Cubic flows (Overall*).

Meanwhile, less retransmissions occur for both Cubic and
the overall, with the presence of Modest BBR. Figure 11(a)
shows that Modest BBR would get about 2X to 3X packet
retransmission compared to Cubic. Besides, the Cubic flow
coexisting with Modest BBR experience 0.5X to 1X less
retransmission, compared to the Cubic flow coexisting with
BBR. Furthermore, Figure 12 shows the average number of
retransmission of each flow and the total of each flow group.
The Overall achieves 120% less retransmission compared to
Overall+ while only 39% more retransmission compared to
Overall*. Thus, we can conclude that Modest BBR is more
inter-protocol friendly to Cubic than BBR. And Cubic is a loss
sensitive congestion control which less retransmission would
improve its performance.

On the other hand, the flow group of one Modest BBR
and one BBR is adopted to testify the fairness between
Modest BBR to BBR. The expected result should be that
Modest BBR gets comparable performance compared to BBR.
Figure 9(b) and Figure 11(b) show that Modest BBR is a
competitive congestion control. Modest BBR gets only about
7% lower throughput compared to BBR while can reduce
almost 50% retransmission. This demonstrates that the window
adjustment responding to retransmission is yet simple and
effective mechanism to moderate aggressiveness.

D. Convergence and intra-protocol fairness

Then we demonstrate that Modest BBR flows can converge
to their fair shares. Similar to the experiments done in [3] and
[10], we performed the convergence and fairness experiments
for BBR and Modest BBR by letting five flows to compete for
the bottleneck shares. We added a new flow every 3 seconds on
a parking lot topology (starting points:0s, 3s, 6s, 9s, 12s) and

Time (s)

60 120 180 240 300 360 420 480 540 600

#
 o

f
P

a
c
k
e
ts

 R
e
tr

a
n

s
m

it

400

600

800

1000

1200
Modest BBR

Cubic

Overall

(a) One Cubic and one Modest BBR.

Time (s)

60 120 180 240 300 360 420 480 540 600

#
 o

f
P

a
c
k
e
ts

 R
e
tr

a
n

s
m

it

2000

3000

4000

5000

6000
BBR

Modest BBR

Overall

(b) One BBR and one Modest BBR
Fig. 11. The packet retransmission of Cubic, BBR and Modest BBR when
they coexist.

Congestion Algorithm

Cubic Modest BBR BBR Modest BBR* Overall Overall* Overall+

#
 o

f
P

a
c

k
e

ts
 R

e
tr

a
n

s
m

it

0

500

1000

1500

2000

2500

3000

3500

Fig. 12. The average number of retransmissions of each flow.

continued the experiment to 60 seconds. Throughput data are
collected every 3 seconds. Figures 13(b) and 13(a) show BBR
and Modest BBR performance, respectively. As the figures
show, Modest BBR tracks BBR’s convergence and fairness
which both converge to fair share throughput around 22 sec-
ond. Thus, the Modest BBR’s congestion control mechanism
is demonstrated that has little impact on convergence and
intra-protocol fairness. In other word, the learning fair share
mechanism embedded inside BBR, which Modest BBR has
inherited, is workable and effective.

V. RELATED WORKS

Since the introduction of TCP, a large amount of congestion
controls have been developed. Reno [11] is nowadays consid-
ered the standard TCP which basically implements the four
classical congestion control mechanisms of TCP (i.e., Slow
Start, Congestion Avoidance, Fast Retransmission and Fast
Recovery). BIC [7] uses two phases to update the bandwidth;
linear increase to approach a fair window size, and binary
search to improve RTT fairness. Linear increase is similar
to additive increase, while binary search essentially uses two
window sizes (Wmax and Wmin) that updates these windows
and the actual window size to approximate the optimal window
size. Once Wmax and Wmin are converging, BIC falls back
to linear increase. Cubic [6] is an improvement of BIC, which
aims to compensate the aggressive behavior of BIC to more
reasonable levels, and simplifies the algorithm. The window
growth function of Cubic is a Cubic function, whose shape
is very similar to the growth function of BIC. BBR, which
is proposed in [3], shows that it can get better performance
than current other TCP congestion control algorithms and
especially in WAN environment. BBR measures the end-to-end
RTT and its bottleneck bandwidth and uses this measurement
result to calculate an appropriate congestion window to fully
utilize the bottleneck capability.

VI. CONCLUSION

This paper presents Modest BBR, a new congestion control
for achieving high throughput and better inter-protocol fair-

Time (sec.)

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

T
h

ro
u

g
h

p
u

t
(M

b
it

s
/s

)

10

20

30

40

50

60

70

80

90

100
Modest BBR 1

Modest BBR 2

Modest BBR 3

Modest BBR 4

Modest BBR 5

(a) Five Modest BBR flows.

Time (sec.)

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

T
h

ro
u

g
h

p
u

t
(M

b
it

s
/s

)

10

20

30

40

50

60

70

80

90

100
BBR 1

BBR 2

BBR 3

BBR 4

BBR 5

(b) Five BBR flows
Fig. 13. The intra-protocol fairness of Modest BBR and BBR.

ness. It primarily aims at alleviating the packet retransmission
and adjusting its pacing rate according to network condition.
Our extensive experiments demonstrated that Modest BBR
can maintain high utilization while affect less on loss-based
proposals (e.g., Cubic).

REFERENCES

[1] M. Hock, R. Bless, and M. Zitterbart, “Experimental evaluation of BBR
congestion control,” in Network Protocols (ICNP), 2017 IEEE 25th
International Conference on. IEEE, 2017, pp. 1–10.

[2] A. Afanasyev, N. Tilley, P. Reiher, and L. Kleinrock, “Host-to-host
congestion control for TCP,” IEEE Communications surveys & tutorials,
vol. 12, no. 3, pp. 304–342, 2010.

[3] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-based congestion control,” Queue, vol. 14, no. 5,
p. 50, 2016.

[4] Y. Zhang, L. Cui, F. P. Tso, Q. Guan, and W. Jia, “TCon: A Trans-
parent Congestion Control Deployment Platform for Optimizing WAN
Transfers,” in IFIP International Conference on Network and Parallel
Computing. Springer, 2017, pp. 49–61.

[5] N. S. Rao, Q. Liu, S. Sen, J. Hanley, I. Foster, R. Kettimuthu, C. Q. Wu,
D. Yun, D. Towsley, and G. Vardoyan, “Experiments and Analyses of
Data Transfers over Wide-Area Dedicated Connections,” in Computer
Communication and Networks (ICCCN), 2017 26th International Con-
ference on. IEEE, 2017, pp. 1–9.

[6] S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-friendly high-speed
TCP variant,” ACM SIGOPS Operating Systems Review, vol. 42, no. 5,
pp. 64–74, 2008.

[7] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion control
(BIC) for fast long-distance networks,” in INFOCOM 2004. Twenty-third
AnnualJoint Conference of the IEEE Computer and Communications
Societies, vol. 4. IEEE, 2004, pp. 2514–2524.

[8] J. Gettys and K. Nichols, “Bufferbloat: Dark buffers in the internet,”
Queue, vol. 9, no. 11, p. 40, 2011.

[9] Handigol, Nikhil and Heller, Brandon and Jeyakumar, Vimalkumar
and Lantz, Bob and McKeown, Nick, “Reproducible network exper-
iments using container-based emulation,” in Proceedings of the 8th
International Conference on Emerging Networking Experiments and
Technologies, ser. CoNEXT ’12. New York, NY, USA: ACM, 2012,
pp. 253–264.

[10] K. He, E. Rozner, K. Agarwal, Y. J. Gu, W. Felter, J. Carter, and
A. Akella, “AC/DC TCP: Virtual congestion control enforcement for
datacenter networks,” in Proceedings of the 2016 ACM SIGCOMM
Conference. ACM, 2016, pp. 244–257.

[11] S. Floyd and T. Henderson, “The NewReno Modification to TCP’s Fast
Recovery Algorithm,” Expires, vol. 345, no. 2, pp. 414–418, 2004.

