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Abstract—This paper investigates a dynamic 3D trajectory de-
sign of multiple cache-enabled unmanned aerial vehicles (UAVs)
in a wireless device-to-device (D2D) caching network with the
goal of maximizing the long-term network throughput. By storing
popular content at the nearby mobile user devices, D2D caching is
an efficient method to improve network throughput and alleviate
backhaul burden. With the attractive features of high mobility
and flexible deployment, UAVs have recently attracted significant
attention as cache-enabled flying base stations. The use of cache-
enabled UAVs opens up the possibility of tracking the mobility
pattern of the corresponding users and serving them under limited
cache storage capacity. However, it is challenging to determine
the optimal UAV trajectory due to the dynamic environment with
frequently changing network topology and the coexistence of aerial
and terrestrial caching nodes. In response, we propose a novel
multi-agent reinforcement learning based framework to determine
the optimal 3D trajectory of each UAV in a distributed manner
without a central coordinator. In the proposed method, multiple
UAVs can cooperatively make flight decisions by sharing the gained
experiences within a certain proximity to each other. Simulation
results reveal that our algorithm outperforms the traditional single-
and multi-agent Q-learning algorithms. This work confirms the
feasibility and effectiveness of cache-enabled UAVs which serve as
an important complement to terrestrial D2D caching nodes.

Index Terms—Unmanned aerial vehicles (UAVs), trajectory
design, wireless caching, multi-agent reinforcement learning.

I. INTRODUCTION

IN RECENT years, the proliferation of data-intensive wire-
less applications, such as augmented reality and mobile on-

line gaming, leads to an explosion of network traffic. To alleviate
the backhaul overload caused by duplicate content transmission,
device-to-device (D2D) caching is a promising approach by
storing popular content at the users’ cache. In that way, the
content requests can be served via D2D communications without
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incurring the cost of using cellular bandwidth [1]. However,
designing wireless D2D caching systems face two major chal-
lenges. Firstly, the content requests may not be satisfied due to
the limited cache storage of D2D users. Secondly, caching at
static nodes may not be effective in a mobile environment. Al-
though caching contents at multiple D2D nodes or base stations
(BSs) may resolve this challenge, it still suffers from signaling
overhead and additional storage cost. Therefore, there is a need
for a flexible deployment of cache-enabled BSs that can track the
users’ movement to effectively transmit the requested contents.

Unmanned aerial vehicles (UAVs) as aerial BSs [2] in which
popular contents can be cached provide several benefits to
the cellular network. Firstly, UAVs can provide wider wireless
coverage due to high line-of-sight (LoS) probabilities at high
altitudes [3]. Secondly, cache-enabled UAVs can be dynamically
deployed and moved to deliver the requested files to the desired
users, thereby improving caching efficiency [4]. However, the
operation time of UAVs is constrained by its limited battery
capacity. Therefore, how to design an efficient UAV trajectory to
achieve a high overall content delivery performance is a critical
issue.

In this paper, we consider an aerial-terrestrial wireless caching
network in which popular contents can be cached at UAVs and
ground mobile users. In this case, to utilize the channel and stor-
age resources efficiently, the trajectory design should consider
both the movement of the ground user and the behavior of other
UAVs. This makes the problem of finding optimal trajectories
more complex and challenging. In short, two key problems are
addressed in this paper: 1) how to design a cooperative moving
strategy for multiple cache-enabled UAVs taking into account
the user mobility; and 2) how to improve network throughput
by efficiently allocating the cache storage capacity at the UAVs.

A. Related Work

Deploying cache-enabled UAVs in the presence of terres-
trial networks has been discussed in [5]–[12]. In [5], the au-
thors considered the joint caching and resource allocation of
cache-enabled UAVs that can serve ground users over licensed
and unlicensed bands. An effective UAV spectrum allocation
scheme was proposed to allocate appropriate bandwidth with
the objective to maximize the number of stable queue users. The
authors of [6] investigated the UAV-assisted content caching and
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transmission problems for the wireless virtual reality networks,
whose goal is to find the optimal content and cache storage ca-
pacity at the ground BSs. To maximize the quality-of-experience
(QoE) of ground users, a machine learning (ML) framework
was proposed to determine the UAVs’ position and optimal
cache contents at the UAV [7]. A blockchain-based approach
was proposed to solve the node failure and network connec-
tivity problem for maintaining the reliability requirements of
a drone-caching network [8]. Some studies on cache-enabled
wireless networks focused on the design of secure transmission
schemes by adjusting the UAV trajectories [9] and performing
interference management [10]. In addition, there exist works
focusing on utilizing UAVs to assist terrestrial D2D networks.
In [11], a UAV transmission resource allocation problem was
considered in which the UAV acts as a carrier to transfer energy
to the D2D pairs. The authors of [12] considered a UAV enabled
caching in which contents can be transferred via a terrestrial
BS or a UAV. However, to our best knowledge, the design of
aerial-terrestrial wireless caching network in which contents can
be cached at both UAVs and terrestrial D2D users has not been
explored in the existing literature.

Furthermore, the trajectory design or placement problem for
optimizing the performance of the UAV-assisted network has
received tremendous attention under different setups, such as
coordinate multipoint (CoMP) architectures [13], UAV-enabled
multicasting systems [14], and UAV sensing systems [15]. To
fully exploit the benefit of the UAV, several works have studied
the trajectory design taking into account the user mobility [16],
[17]. In these works, the UAV trajectory was designed by
assuming that the positions of ground users are known [16]
or predictable [17] in a given period. However, in practice
the users may move randomly and independently, resulting in
unpredictable mobility patterns. Moreover, the UAV trajectory
design in the existing works was solved offline either in 2D
space [16], [17] or by separately designing the altitude and
horizontal location [18]. Different from these works, in this
paper the 3D movement design for UAVs is adjusted in an online
fashion taking into account the time dynamics of user positions.

To realize the highly maneuverable autonomous UAVs, ML-
based solutions are desired for the UAV control without human
intervention, which has been considered as a use case in the 3 rd
Generation Partnership Project (3GPP) [19]. The K-means clus-
tering algorithm was adopted to partition the ground users into K
clusters, in which the UAV can be initially placed at the centroid
of the cluster [20], [21]. For the online UAV trajectory design
with mobile ground users, the Markov decision process (MDP)
has been widely applied to model the UAV control decision
problem, which can be solved by reinforcement learning (RL)
techniques. In RL, an agent can learn the optimal policy by in-
teracting with the unknown environment (e.g., user movements,
channel variations). A joint K-means clustering and single RL-
based algorithm for the multi-UAV deployment was proposed
in [22]. However, the single RL requires a centralized controller
with full knowledge of network information from each UAV,
which is infeasible for highly dynamic aerial networks [23].
Compared to the single RL, multi-agent reinforcement learning
(MARL) has been shown to provide a more effective learn-
ing performance, especially when only local information is

available [24]. By considering the individual and application-
specific information, MARL solves the sequential multi-agent
decision making problem in distributed manners. The authors
of [25] investigated a cellular network in which multiple UAVs
transmit their sensory data to terrestrial nodes. By utilizing
MARL, a multi-UAV trajectory design algorithm was devel-
oped, whose goal is to optimize the number of successful data
transmissions. In [26], an MARL-based approach was proposed
to solve the joint trajectory design and power control problem
that aims to maximize the instantaneous transmit rate. In the
above works, each UAV is regarded as an independent learning
agent that conducts the standard single agent RL algorithm with
no interaction between other UAVs. However, it is revealed
that appropriate cooperation between UAVs can substantially
improve the long-term performance [27]. Therefore, the coop-
eration and learning for the online trajectory design of multiple
cache-enabled UAVs still require further investigation.

B. Contribution

As discussed above, invoking MARL to UAV-assisted wire-
less networks offers a promising solution for intelligent UAV
control and resource allocation. However, the research gap still
exists in investigating the aerial-terrestrial wireless caching net-
works, which is worthy of further study. In this paper, we aim
to develop an MARL framework for the continuous operation
of multiple cache-enabled UAVs. Specifically, we consider a
downlink wireless caching network that allows the coexistence
of terrestrial D2D caching and aerial UAV-to-Device (U2D)
caching using sub-6 GHz and millimeter wave (mmWave) spec-
trum bands, respectively. Due to higher data transmission rates
in LoS as compared to sub-6 GHz, content delivery over the
U2D links is prioritized first. We assume that each UAV can
communicate with ground users and other UAVs in the absence
of a central controller. Based on the proposed framework, the
main contributions of this paper can be summarized as follows:
� We develop a novel framework for 3D UAV trajectory de-

sign in which multiple cache-enabled UAVs are deployed
to serve ground users with an unpredictable mobility pat-
tern. Meanwhile, we formulate the network throughput
maximization problem by optimizing the UAVs’ initial
positions and their dynamic movements. We show that
the formulated problem is NP-hard due to the coupled
association constraint.

� We exploit the MARL technique to design the optimal
trajectories of multiple UAVs in a distributed manner, in
which each UAV acts as an agent and conducts a de-
cision algorithm independently. Utilizing the local state
measurements, the proposed online UAV control scheme
autonomously adjusts the real-time UAV position without
prior knowledge of content request statistics or channel
models. Moreover, unlike the existing MARL-based tra-
jectory design based on fully independent agents, in the
proposed scheme agents can share the gained experiences
within a certain proximity. By optimally selecting the size
of cooperative region, the proposed algorithm can strike a
balanced tradeoff between independent action selection in
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TABLE I
LIST OF NOTATIONS

the existing MARL and joint action selection in the single
RL.

� Simulation results confirm the effectiveness of integrat-
ing cache-enabled UAVs into the terrestrial D2D wireless
caching network. Also, it is demonstrated that our proposed
learning algorithm can significantly improve the network
throughput as well as the U2D link utilization over other ex-
isting state-of-the-art solutions. Finally, we provide some
valuable insights for the design of learning parameters
(e.g., learning rate) and network parameters (e.g., cache
storage capacity).

C. Organization

The rest of the paper is organized as follows. In Section II,
we introduce the system model. Section III presents the content
delivery service and the problem formulation. In Section IV,
we provide the RL-based trajectory design with independent
agents. We propose the cooperative MARL-based trajectory
design in Section V. Simulation results are given in Section VI.
We conclude the paper in Section VII. Additionally, the list of
notations is given in Table I.

II. SYSTEM MODEL

A. Network Model

We consider an aerial-terrestrial wireless caching network,
where K UAVs equipped with cache storage are deployed to
serve ground mobile users, as shown in Fig. 1. Let U and K
be the sets of all users and UAVs, respectively. Besides, one

Fig. 1. Illustration of aerial-terrestrial wireless caching networks.

ground BS is located at the center of the geographical area
while all the UAVs are covered by the ground BS. We assume
that the locations of mobile users are spatially distributed as a
homogeneous Poisson point process (HPPP)Φu with density λu

[28]. The HPPP is widely used in the performance analysis of
mobile networks due to its mathematical tractability [29].

The user content requests are served via one of the following
links: U2D links, D2D links, and BS-to-device (B2D) links. The
UAVs operate at the mmWave band while the B2D and D2D links
operate at the same sub-6 GHz band. We also assume that the
UAVs are connected to the ground BS via high-speed backhaul
links. We will discuss the link selection policy for the content
delivery in Section III.

Let hk,t ∈ [hmin, hmax] denote the altitude of the kth UAV at
the tth time slot, where hmin and hmax are the lowest and the
highest altitudes for all the UAVs, respectively. The horizontal
coordinate of the kth UAV at the tth time slot is denoted by
wk,t = (xk,t, yk,t) and the coordinate of the uth user at the tth
time slot is denoted by qu,t = (ru,t, su,t). We consider a realistic
Gauss Markov mobility model [30] for the movement of ground
users. In the Gauss Markov mobility model, both the values of
velocity and moving direction at time t are calculated based
on the values of velocity and moving direction at time t− 1.
Namely, the velocity and direction for the uth user at the tth
time slot can be written as

vu,t = αvu,t−1 + (1− α)v̄ +
√

(1− α2)v̂t−1 , (1)

θu,t = αθu,t−1 + (1− α)θ̄ +
√

(1− α2)θ̂t−1 , (2)

where α ∈ [0, 1] reflects the degree of randomness in the mo-
bility pattern [31]. Also, v̄ and θ̄ denote the asymptotic mean
value of velocity and direction for all users when t approaches
infinity, respectively. Parameters v̂ and θ̂ are independent sta-
tionary Gaussian processes with zero mean and unit variance.
In our system, we focus on the case where the mobility model
incorporates randomness and memory by setting 0 < α < 1.

B. Channel Model

Two different channel models are considered in our system,
namely UAV-to-ground channel and ground-to-ground channel.
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1) UAV-to-Ground Channel Model: Compared to the propa-
gation of terrestrial communications, the UAV-to-ground chan-
nel is highly dependent on the altitude and the elevation angle.
For the propagation model, we adopt the log-normal shadowing
channel [7], in which LoS links and non-line-of-sight (NLoS)
links can be modeled with corresponding channel parameters.
The LoS and NLoS pathloss (in dB) from the kth UAV to the
uth user at the tth time slot are given by

lLoS
u,k,t = lFS(d0) + 10μLoS log(du,k,t) + χσLoS , (3)

lNLoS
u,k,t = lFS(d0) + 10μNLoS log(du,k,t) + χσNLoS , (4)

where lFS(d0) = 20 log( 4πd0fc
c ) is the free-space path loss at

reference distance d0 and duu,k,t is the distance between the kth
UAV and the uth user at the tth time slot, i.e.,

duu,k,t =
√

h2
k,t + (xk,t − ru,t)

2 + (yk,t − su,t)
2 . (5)

Also, fc and c are the carrier frequency and the speed of light,
respectively. Here, μLoS and μNLoS are the large-scale path loss
exponents for the LoS and NLoS links, respectively. χσLoS and
χσNLoS represent the Gaussian random variables with zero mean
for the LoS and NLoS links, respectively. σLoS and σNLoS are,
respectively, the standard deviations for the LoS and NLoS links.

The LoS probability can be modeled as a logistic function of
the elevation angle φu,k,t [32], i.e.,

Pr(lLoS
u,k,t) =

1

1 +Xe−Y (φu,k,t−X)
, (6)

where X and Y are environment-dependent parameters (e.g.,
urban or rural). Also, the elevation angle is given by φu,k,t =

sin−1(
hk,t

du,k,t
). Therefore, the average path loss for the U2D links

can be expressed as

l̄u,k,t = lLoS
u,k,t × Pr(lLoS

u,k,t) + lNLoS
u,k,t × (1− Pr(lLoS

u,k,t)) . (7)

According to [33], the interference can be neglected if the
distance is large enough in the mmWave UAV networks. The
signal-to-noise ratio (SNR) for the U2D link from the kth UAV
to the uth user is given by

ΓUAV
u,k,t =

PUAV|gu,k,t|2
10l̄u,k,t/10σ2

, (8)

where PUAV denotes the transmission power of a UAV and σ2

denotes the power of additive white Gaussian noise (AWGN).
In addition, |gu,k,t|2 denotes the small-scale fading gain, which
follows a Nakagami-m distribution to characterize a wide range
of fading environments.

2) Ground-to-Ground Channel Model: For the terrestrial
links, we consider the general power-law propagation model
and the small-scale Rayleigh fading channel. We denote the
channel gain of the D2D link between the uth user and the
mth user at the tth time slot as |gdu,m,t|2. Besides, the channel
gain of the B2D link between the uth user and the ground BS
at the tth time slot is denoted as |gcu,t|2. It is assumed that
|gdu,m,t|2 and |gcu,t|2 are independent and identically distributed
exponential random variables with mean μd and μc [34]. For the
D2D links, the receivers experience both inter-D2D interference

and cross-tier interference from the ground BS. Therefore, the
signal-to-interference-plus-noise ratio (SINR) of the D2D link
achieved by the uth user from the mth user at the tth time slot
can be expressed as

ΓD2D
u,m,t =

PD2D

∣∣gdu,m,t

∣∣2ddu,m,t
−β

σ2 +
∑

j∈Φ\{m}
PD2D

∣∣gdu,j,t∣∣2ddu,j,t−β + PBS

∣∣gcu,t∣∣2dcu,t−β ,

(9)

where Φ denotes the set of D2D transmitters; β represents
the path loss exponent; PD2D and PBS denote the transmission
power of the D2D user and the ground BS, respectively. Besides,

ddu,m,t =
√

(ru,t − rm,t)
2 + (su,t − sm,t)

2 is the distance be-

tween the uth user and the mth user; dcu,t =
√

ru,t2 + su,t2 is
the distance between the uth user and the ground BS which is
located at the origin.

On the other hand, for the B2D links, we ignore the inter-
ference from other D2D links since the transmit power of D2D
users is much less than that of the ground BS. Hence, the SNR
of the B2D link at the uth user at the tth time slot is given by

ΓBS
u,t =

PBS

∣∣gcu,t∣∣2dcu,t−β
σ2

. (10)

C. Caching Model

Suppose that each ground user and UAV have finite cache
storage capacity Mq and Mw = cMq with integer c > 1, re-
spectively. Also, we consider a requested content library F =
{f1, f2, . . ., fN} that consists of N equal-sized content files. It
is assumed that the ground BS has the entire requested content
library. We denote the content request probability of fi as pi,
which satisfies the Zipf law [35], [36]. The request probability
of fi is given by

pi =
i−κ

N∑
j=1

j−κ
, (11)

whereκ is the popularity factor. A largeκ implies that the content
files are concentrated distribution. On the contrary, a smaller
κ implies that the content request probability is more evenly
distributed.

We adopt the geographic caching strategy [37] for both U2D
and D2D links. In the U2D caching, each UAV stores content fi
with probability qui ∈ qu = [qu1 , . . ., q

u
N ], i ∈ [1, N ]. Similarly,

each D2D user stores content fi with probability qdi ∈ qd =

[qd1 , . . ., q
d
N ], i ∈ [1, N ]. Also, we have

∑N
i=1 q

u
i ≤Mw and∑N

i=1 q
d
i ≤Mq due to the cache storage capacity constraints

at UAVs and users, respectively [38].
The following cases are considered for calculating the cache

hit probability, which is defined as the probability that a user can
receive the requested file.

1) Self-Request Cache Hit: In this case, the requested file has
been cached in its own local device. The cache hit probability
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can be written as

pself =

N∑
i=1

piq
d
i . (12)

2) D2D Cache Hit: The probability of having the requested
file cached at a D2D user depends on the D2D user density λu

and the area size. According to [39], the cache hit probability of
file fi within distance Rd can be written as

pD2D
hit =

N∑
i=1

pi(1− qdi )(1− e−λuq
d
i πR

2
d) . (13)

3) U2D Cache Hit: Recall that the UAVs can adjust their
positions according to the users’ positions. Thus, for the infinite
time horizon, the UAVs can also be considered to be spatially
distributed as an HPPP. In principle, the UAV cache hit proba-
bility pUAV

hit depends on the average number of UAVs in which
the user-UAV distance is within the UAV’s transmission range
Ru. Clearly, the actual value of pUAV

hit is affected by the UAV
trajectory design. The upper bound of pUAV

hit is obtained when
the requested user is within the transmission range of all the K
UAVs. Hence, we have

pUAV
hit ≤

N∑
i=1

pi(1− qdi )(1− e−Kqui πR
2
u) . (14)

III. CONTENT DELIVERY IN AERIAL-TERRESTRIAL WIRELESS

CACHING NETWORKS

A. Content Delivery

Let the requested file of the uth user at the tth time slot be
denoted as τut . The sets of cached files at the kth UAV and the
mth user are denoted byCk

t andDm
t , respectively. The following

actions will be performed when receiving a content request from
a ground user.
� Case 1: The requested file is stored at the kth UAV located

in the U2D transmission range, i.e.,

∃k : (τut ∈ Ck
t ) ∧ (duu,k,t ≤ Ru) , (15)

where ∧ is the logical “and”. The uth user can obtain τut
from the kth UAV via the U2D link.

� Case 2: There does not exist a UAV caching τut within the
U2D transmission range, i.e.,

�k : (τut ∈ Ck
t ) ∧ (duu,k,t ≤ Ru) . (16)

Then, there exist two possible sub-cases:
� If the requested file τut is stored at the mth ground user

within the D2D transmission range, i.e.,

∃m : (τut ∈ Dm
t ) ∧ (ddu,m,t ≤ Rd) , (17)

the uth user receives τut from the mth user via the D2D
link.

� Otherwise, τut is delivered to the uth user by the ground
BS.

Next, we analyze the successful transmission probability un-
der different transmission modes.

1) U2D Links: If the required content is stored in one or more
UAVs, the user is assumed to associate with the nearest UAV. Let
kfi,u denote the index of the nearest UAV caching the content
fi requested by the uth user. To simplify the notation, we use k
instead of kfi,u hereafter. Given the U2D SNR threshold ηUAV,
the successful transmission probability is given by

p̃UAV
u,k,t = Pr

(
ΓUAV
u,k,t ≥ ηUAV

)

= Pr

(
|gu,k,t|2 ≥ 10l̄u,k,t/10σ2ηUAV

PUAV

)

= 1− Edu
u,k,t

[
γ(m, 10l̄u,k,t/10σ2ηUAV

b·PUAV
)

Γ(m)

]
, (18)

whereEx[f(x)] denotes the expected value of f(x)with respect
to a random variable x, Γ(α) =

∫∞
0 xα−1e−xdx is the Gamma

function, and γ(α, β) =
∫ β

0 xα−1e−xdx is the lower incomplete
Gamma function. Also, m and b denote the shape parameter and
scale parameter of the Gamma distribution, respectively.

For the Rayleigh fading channel, which can be obtained by
setting m = 1 in the Nakagami fading channel, the channel gain
|gu,k,t|2 follows the exponential distribution with unit mean.
Since the UAVs are assumed to be distributed according to HPPP
with parameter Kqui , the probability density function (PDF) of
the distance between the uth user and the kth UAV is given
by fdu

u,k,t
(r) = 2πqui Kr exp(−πr2qui K) [35]. Then, we can

rewrite (18) as

p̃UAV
u,k,t =

∫ ∞
0

fdu
u,k,t

(r)qu,k,t(q
u, r)dr

= 2πqui K
∫ ∞

0
r exp

(
− 10l̄u,k,t/10σ2ηUAV

PUAV
− πr2qui K

)
dr ,

(19)

where qu,k,t(q
u, r) is the successful transmission probability

conditioned on duu,k,t = r.
2) D2D Links: Let Φi and Φ−i denote the sets of D2D users

with and without content fi requested by the uth user, respec-
tively. Considering the interference from the other D2D links and
the ground BS, we rewrite ΓD2D

u,m,t = |gdu,m,t|2ddu,m,t
−β

/(σ2 +

Ii + I−i + IBS), where Ii =
∑

j∈Φi\{m} PD2D|gdu,j,t|2ddu,j,t−β

and I−i =
∑

j∈Φ−i\{m} PD2D|gdu,j,t|2ddu,j,t−β denote the inter-
ference from other D2D users with and without content fi,
respectively. Also, IBS = PBS|gcu,t|2dcu,t−β represents the inter-
ference from the ground BS. Then, the successful transmission
probability of D2D links conditioned on ddu,m,t = r is given by

qu,m,t(q
d, r) = LIi(s, r)|s=rβηD2D

LI−i(s, r)|s=rβηD2D

× exp

(
−ηD2Dr

βσ2

PD2D

)
exp

(
−PBSηD2Dd

c
u,t
−β |gcu,t|2rβ

PD2D

)
,

(20)

where LIi(s, r)|s=rβηD2D
= E[exp(−sIi)] denotes the Laplace

transform of Ii and ηD2D is the SINR threshold for D2D links.
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According to [40], we can have LIi(s, r)|s=rβηD2D
given by

LIi(s, r)|s=rβηD2D
= exp

(
− 2π

β
ηD2D

2
β λD2D

× qdi B
′
(

2
β
, 1− 2

β
,

1
ηD2D + 1

))
, (21)

where B′(x, y, z) Δ
=
∫ 1
z u(x−1)(1− u)(y−1)du is the comple-

mentary incomplete Beta function. Similarly, we have

L−Ii(s, r)|s=rβηD2D
= exp

(
− 2π

β
ηD2D

2
β λD2D

× (1− qdi )B

(
2
β
, 1− 2

β

))
, (22)

where B(x, y)
Δ
=
∫ 1

0 u(x−1)(1− u)(y−1)du denotes the Beta
function. Since the D2D users form an HPPP with parameter
qdi λD2D, the PDF of ddu,m,t can be expressed as fdd

u,m,t
(r) =

2πqdi λD2Dr exp(−πqdi λD2Dr
2) [35]. Then, the successful trans-

mission probability of the D2D links can be obtained as

p̃D2D
u,m,t = Pr(ΓD2D

u,m,t ≥ ηD2D)

= 2πqdi λD2D

∫ ∞
0

r · exp
(
− 2π

β
ηD2D

2
β λD2D

×
(
qdi B

′
(

2
β
, 1− 2

β
,

1
ηD2D + 1

)
+(1− qdi )B

(
2
β
, 1− 2

β

))

− ηD2Dr
βσ2

PD2D
− PBSηD2Dr

βdcu,t
−β

PD2D
− πqdi λD2Dr

2

)
dr . (23)

3) B2D Links: Recall that the ground BS has the entire re-
quested content library. The successful transmission probability
of the B2D link can be obtained from (19) by setting K = 1 and
qui = 1, i.e.,

p̃BS
u,t = Pr(ΓBS

u,t ≥ ηBS)

= 2π
∫ ∞

0
r exp

(
− ηBSσ

2rβ

PBS
− πr2

)
dr , (24)

where ηBS is the SNR threshold for B2D links.
With the expressions of the successful transmission probabil-

ities reported above, in the following subsection we define the
performance metric for the considered aerial-terrestrial wireless
caching network.

B. Problem Formulation

As discussed previously, we assume that the U2D links have
the highest priority in order to best utilize the mmWave spectrum
resource. The throughput of the U2D link can be written as

TUAV = pUAV
hit

∑
∀u∈U

(
p̃UAV
u,k,t ·

BUAV

Nk
log2(1 + ΓUAV

u,k,t)

)
, (25)

where BUAV is the system bandwidth of UAV transmission and
Nk is the number of users receiving data from all the UAVs.

If the content request is fulfilled by the D2D links, the through-
put of the D2D links can be written as

TD2D = (1− pUAV
hit )pD2D

hit

×
∑
∀u∈U

(
p̃D2D
u,m,t ·

BD2D

Nu
log2(1 + ΓD2D

u,m,t)

)
, (26)

where BD2D is the system bandwidth of D2D transmission and
Nu is the number of users receiving data through D2D links.

If both the U2D and the D2D links cannot provide the re-
quested content, the user acquires the content from the ground
BS. The throughput of the B2D links can be written as

TBS = (1− pUAV
hit )(1− pD2D

hit )

×
∑
∀u∈U

(
p̃BS
u,t ·

BBS

Nb
log2(1 + ΓBS

u,t)

)
, (27)

where BBS is the system bandwidth of cellular transmissions
and Nb is the number of users receiving data from the ground
BS. Then, the total network throughput can be calculated as the
sum of throughput obtained from all the links, i.e.,

Ttotal = TUAV + TD2D + TBS . (28)

From (25) and (28), it can be observed that the network
throughput is substantially affected by the positions of UAVs.
More specifically, the positions of UAVs not only affect the U2D
successful transmission probability but also the UAV cache hit
probability. It is worth noting that (14) only gives the upper
bound of the UAV cache hit probability. The real value of the
UAV cache hit probability depends on the real-time positions of
all the UAVs and all the ground users. Thus, the UAV trajectory
optimization problem is formulated as

max
xk,t,yk,t,hk,t

Ttotal (29a)

s.t. xmin ≤ xk,t ≤ xmax, ∀t,∀k, (29b)

ymin ≤ yk,t ≤ ymax, ∀t,∀k, (29c)

hmin ≤ hk,t ≤ hmax, ∀t,∀k, (29d)√
ẋ2
k,t + ẏ2

k,t + ḣ2
k,t ≤ vmax, ∀t,∀k, (29e)

K∑
k=1

ρu,k ≤ 1, ∀u, (29f)

ρu,k ∈ {1, 0}, ∀u,∀k, (29g)

where (29b) and (29c) indicate the constraints of the limited
area, with [xmin, xmax] and [ymin, ymax] representing the x-axis
and y-axis movement range of the UAVs, respectively; (29d) is
the altitude constraint for the UAVs. Given the maximum UAV
velocity vmax, (29e) represents the flight velocity constraint, in
which ẋk,t, ẏk,t, and ḣk,t denote the first derivatives ofxk,t, yk,t,
and hk,t, with respect to t, respectively. Furthermore, (29f) and
(29g) are the association constraints to ensure that each user is
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only served by one UAV at most, with ρu,k denoting the binary
association indicator of the uth user and the kth UAV.

Note that problem (29a) is a non-convex mixed integer pro-
gramming problem because of the complicated mathematical
expression of the successful transmission probability and the
integer association constraint in (29f). Such problems are gen-
erally difficult to obtain the solution in polynomial computa-
tional complexity [41]. In the following sections, we propose
an MARL-based method for optimizing the UAV trajectory
strategy.

IV. REINFORCEMENT LEARNING FOR 3D UAV TRAJECTORY

DESIGN WITH INDEPENDENT AGENTS

Generally, the proposed RL framework for UAV trajectory
design consists of two phases. In the first phase, initial UAVs
positions are calculated by the K-means clustering algorithm. In
the second phase, the UAVs positions are dynamically adjusted
based on the Q-learning algorithm to achieve the maximum
network throughput.

A. UAV Trajectory Initialization Based on K-Means Clustering

From (8), the distance between the UAVs and the users plays
a key role in network performance. To minimize the distance
between the UAVs and the users, we apply the K-means cluster-
ing algorithm to divide all the users into K clusters and find the
initial UAVs positions. As an unsupervised learning method,
K-means clustering algorithm can be employed to cluster the
objective nodes into several groups and find the centroid of
each group, which is widely adopted in recent works for UAV
trajectory design [22]. We denote the cluster set of all the users as
S = {S1, S2, . . ., SK}. The objective of the K-means clustering
algorithm is to minimize the overall squared distance between
each user and its nearest centroid, which is given by

min
S

K∑
k=1

∑
qu∈Sj

||qu − ck||
2
, (30)

where

ck =
1
|Sk|

∑
qu∈Sk

qu, ∀k (31)

is the centroid point of cluster k. We select ck from the final
results of the K-means clustering algorithm to be the initial UAVs
positions.

B. Independent Q-Learning Based Trajectory Design

Although the K-means clustering algorithm can provide the
initial UAVs positions, it has the following limitations. First, the
K-means clustering algorithm may converge to a local minimum
and thus becomes inefficient when the network consists of a
large number of mobile nodes [22]. Second, the clustering-based
approach fails to take into account other key factors, such as
the UAV cache hit probability and the successful transmis-
sion probability. To deal with these limitations, we propose
to adopt the Q-learning algorithm in the second phase of our

proposed method. Hereafter, the “UAV” and “agent” are used
interchangeably.

The UAV trajectory design problem can be formulated as a
MDP, which is composed of five tuples (S,A,R, P, γ), where
S = {s1, . . ., sI} denotes a finite set of states,A = {a1, . . ., aJ}
denotes a finite set of actions, R = {r(si, aj)|si ∈ S, aj ∈ A}
is the set of immediate reward r(si, aj) when action aj is
selected while in state si,P = {p(s,′ s, aj)|s, s′ ∈ S, aj ∈ A} is
the transition probability for an agent that moves from the state
s to the state s′ when performing action aj , and γ ∈ (0, 1] is
the discount factor. Next, we show how the MDP can be solved
using independent Q-learning. In the conventional Q-learning
algorithm, the UAVs can be regarded as independent agents that
learn the optimal action independently. Hereafter, we refer to
this kind of Q-learning method as independent Q-learning.

To learn the optimal action, the first step is to let the agent
recognize the current system state through interacting with the
environment. In particular, the interaction experience is repre-
sented by a Q-value, which is an estimate of the expected reward
for performing a certain action at a certain state. The Q-values
are usually stored in a look-up table called Q-table for reusing
the gained knowledge. In the learning phase, the Q-learning
algorithm iteratively updates the Q-values by the following rule:

Q∗k(s, a)← (1− μ)Qk(s, a)+μ[rk(s, a)+γmax
a′

Qk(s,
′ a′)],

(32)
where Qk(s, a) and Q∗k(s, a) are the old and new Q-values,
respectively, for the kth agent performing action a at state s.
Here, rk(s, a) denotes the reward for the kth agent and μ is the
learning rate which determines how much the new observation
overwrites the old one. Also, γ is the discount factor, which
represents the impact degree of the future reward on the current
decision.

Next, we describe the MDP design for the proposed trajectory
design using the Q-learning method.

1) State: We consider the 3D position of the UAV to be the
state in our system. Hence, the state of the kth UAV is denoted
by sk = (xk, yk, hk). To simplify the learning process, we adopt
a discrete state-space approximation in which the state space is
quantized into discrete regions.

2) Action: ak = (dak, l
a
k) denotes the action of the kth UAV,

which consists of the direction dak and the moving distance lak of
the UAV. We consider that, at any time slot, the UAV can fly to
an adjacent grid in one of the six directions: up, down, right, left,
forward, and backward. Also, the action space for the moving
distance at each time slot is discretized into z levels associated
with corresponding flight velocities ranging from [0, vmax].

3) Reward: In this work, the reward can be interpreted as
how the action affects the total network throughput Ttotal. The
reward function is designed in a way that encourages the UAV
to take actions that maximize its own throughput. At a time slot,
if the SNR for the U2D link is larger than a minimum SNR
threshold, the UAV receives a reward rk, which is defined as
the throughput provided by the kth UAV. Otherwise, the UAV
receives a zero reward. Hence, the reward function rk can be
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expressed as

rk =

⎧⎨
⎩
∑
∀u∈Ek

BUAV
Nk

log2(1 + ΓUAV
u,k ), if ΓUAV

u,k ≥ ηUAV,

0, otherwise,
(33)

where Ek = {ui ∈ U|τui ∈ Ck, dui

ui,k
≤ Rui

} is the set of
users who are located within the transmission range of the kth
UAV which caches the requested file τui .

Additionally, we adopt the ε-greedy policy [42] for the action
selection in the Q-learning algorithm. More specifically, the
UAV takes the action that has the largest Q-value with a prob-
ability 1− ε for a given current state while randomly selecting
other actions with a probability ε

|A|−1 .

V. COOPERATIVE MULTI-AGENT REINFORCEMENT LEARNING

FOR 3D UAV TRAJECTORY DESIGN

A. Overview

Independent Q-learning methods present inefficiency in terms
of learning speed and effectiveness when they are adopted in
multi-UAV systems. Since each of the UAVs learns the policy
only from its own experience, the learned knowledge of a single
UAV (e.g., channel environment and user mobility) cannot be
reused by other UAVs. It is time wasted for all the UAVs to
explore the unknown environment when some of them are near
to each other.

To deal with this problem, we propose a distributed cooper-
ative mechanism for the learning process of Q-learning. In the
proposed mechanism, UAVs within the same cooperative region
(defined formally later) work together to achieve a common
goal by sharing the past experience. More specifically, these
coordinated UAVs exchange the obtained reward and update the
shared Q-table. Hence, unnecessary learning processes can be
reduced by reusing the past experiences learned in the same
cooperative region.

Figure 2 shows illustrations of different Q-learning methods
for multi-UAV systems. In the single Q-learning, the action
selection is performed in a centralized manner in which the
ground BS maintains a global Q-table. On the other hand, in the
conventional MARL, each UAV distributedly learns its own pol-
icy based on its own Q-table. Unlike the above two independent
Q-learning methods, the proposed cooperative MARL allows
UAVs to select actions in a coordinated fashion by updating the
shared Q-table. Hence, the proposed algorithm is executed on
both the ground BS and the UAVs.

B. Algorithm Design

Now we present the proposed cooperative MARL (CMARL)
based solution for multi-UAV trajectory design in the aerial-
terrestrial wireless caching network. Each UAV learns an opti-
mal policy for controlling and optimizing its trajectory from its
own experience as well as from other nearby UAVs within the
same region.

The whole observed area is divided into NA equal-size co-
operative regions. We denote the cooperative region number at
which the kth UAV is located as crk ∈ {1,. . .,NA}, ∀k ∈ K. For

Fig. 2. Illustrations of three Q-learning methods for multi-UAV systems with
K = 3.

a target UAV, if there are other UAVs located in the same cooper-
ative region as the target UAV, these UAVs are considered to be in
the same coordinated state. UAVs in the same coordinated state
perform action selection based on a shared Q-table. Otherwise,
if no UAV is located in the same cooperative region as the target
UAV, the target UAV is said to be in the uncoordinated state and
use its own Q-table. Therefore, we have the following cases for
the Q-table updating:
� Uncoordinated state to uncoordinated state: In this case,

each UAV performs flight decisions independently accord-
ing to its own Q-table. The action ak of the kth UAV is
only affected by its own reward rk. In fact, this case is
equivalent to that in the conventional MARL. Therefore,
the update rule is the same as (32).

� Coordinated state to coordinated state: When the UAVs
move from a coordinated state to another coordinated state,
the optimal action is selected based on the shared Q-table.
The update rule in this case can be written as

Q∗(sk, ak)← (1− μ)Q(sk, ak)

+ μ[r(sk, ak) + γmax
a′k

Q(s′k, a
′
k)] ,

(34)

where Q(sk, ak) and Q∗(sk, ak) are the old and new
Q-values, respectively. Also, r(sk, ak) represents the ob-
tained shared reward when executing the action ak at
the state sk, which is calculated as the average re-
ward over all cooperative UAVs. That is, r(sk, ak) =∑

j∈Gk

1
|Gk | · rj(sk, ak), where Gk = {j ∈ K|crj = crk}

denotes the set of UAVs within the cooperative region crk.
� Coordinated state to uncoordinated state: If the UAV

moves from a coordinated state to an uncoordinated state,
the new Q-value should take into account the policy from its
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own Q-table. Specifically, both the immediate reward and
the expected discounted reward stored in its own Q-table
are incorporated into the update equation, i.e.,

Q∗(sk, ak)← (1− μ)Q(sk, ak)

+ μ[rk(s, a) + γmax
a′

Qk(s,
′ a′)] .

(35)

� Uncoordinated state to coordinated state: Last, in case that
the UAV moves from an uncoordinated state to a coordi-
nated state, the update equation incorporates the immediate
shared reward and the expected discounted reward stored
in the shared Q-table. Thus, we have

Q∗k(s, a)← (1− μ)Qk(s, a)

+ μ[r(sk, ak) + γmax
a′k

Q(s′k, a
′
k)] .

(36)

The details of the proposed CMARL based 3D UAV trajectory
design algorithm are summarized in Algorithm 1. Lines 2-6
initialize the positions of UAVs by using the K-means algorithm.
In lines 9-19, the Q-table is updated using the aforementioned
cooperative mechanism. Lines 23-29 determine the optimal
action and the corresponding 3D UAV position.

It is worth pointing out that state discretization is employed
by using the grid approach in order to obtain an appropriate size
of state space. To deal with the problem induced by large state
space, the proposed method can be extended by simply replacing
the Q-table with deep neural network [42]. Moreover, in this
paper we assume a perfect communication link between the
ground BS and the UAVs. However, in realistic environments,
UAVs may fly out of the wireless coverage of the ground BS [3].
In this case, more complex Q-value updating mechanisms are
required for ensuring the learning stability, which will be our
future work.

C. Analysis of the Proposed CMARL Based Algorithm

The feasibility of utilizing on-device RL for UAV flight con-
trol has been demonstrated in [23], [25]. Also, reducing power
consumption is one of the major challenges in UAV networks.
According to [12], the energy cost of the UAV communication
link is proportional to the transmission data size. We note that the
proposed method requires message exchange between the UAV
and the ground BS when updating the shared Q-table. Clearly,
the extra transmission overhead for updating the Q-value of
a single state-action pair is relatively small compared to the
content data transmission and thereby the related energy cost
can be neglected.

1) Convergence Analysis: The convergence analysis can be
divided into two cases based on the state transition.
� Non-cooperative Case: In this case, the UAV moves from

an uncoordinated state to an uncoordinated state. Recall
that the agent in this case only considers its own reward
during the update of Q-value. Therefore, this case can
be regarded as non-cooperative MARL in which multi-
ple agents execute the single Q-learning independently.
For the convergence of the non-cooperative MARL, it
has been proved in [43] that the non-cooperative MARL

Algorithm 1: Proposed CMARL Based 3D UAV Trajectory
Design Algorithm.
Input: Number of UAVs K; number of cooperative regions

NA.
Output: UAV’s horizontal position wk, UAV altitude hk.
1: Initialize Qk(s, a) = 0 and Q(sk, ak) = 0, ∀s ∈ S,
∀sk ∈ S, ∀a ∈ A, ∀ak ∈ A.

2: Initialize K centroids at random.
3: Divide all the users into K clusters according to (30).
4: for each UAV agent k do
5: Obtain the initial position of the kth UAV

according to (31).
6: end for
7: for each step of episode do
8: for each UAV agent k do
9: Select action ak based on ε-greedy policy.

10: Observe the state s′k and receive the reward rk.
11: if Uncoordinated→ uncoordinated then
12: Update its own Q-table from (32).
13: else if Coordinated→ coordinated then
14: Update the shared Q-table from (34).
15: else if Coordinated→ uncoordinated then
16: Update the shared Q-table from (35).
17: else
18: Update its own Q-table from (36).
19: end if
20: end for
21: end for
22: for each UAV agent k do
23: if In a coordinated state then
24: Select âk = argmaxak

Q(sk, ak) as the
optimal action for a given state sk.

25: Obtain wk and hk from âk.
26: else
27: Select â = argmaxa Qk(s, a) as the optimal

action for a given state s.
28: Obtain wk and hk from â.
29: end if
30: end for
31: return wk, hk;

can converge to the optimal policy ∪Kk=1π
∗
k(sk) under the

following conditions.
(a) π∗k(sk) = π̂k(sk), ∀k
(b) �(a†, a∗k)|a∗k = π∗k(sk) and ∀a∗|a∗k ∈ a∗, Q∗k(sk,a

†)
> Q∗k(sk,a

∗)
(c) �(a1,a2 �=a1)|∀(k, j ∈ {1, 2},a), Q∗k(sk,a

j) ≥
Q∗k(sk,a)

Here, π∗k(sk) and π̂k(sk) refer to the optimal policy from
the global perspective and local perspective, respectively.
If condition (a) is satisfied, the global optimal action a∗k of
the kth UAV is equal to the local optimal action âk in which
each UAV selects the optimal action independently. In
addition, leta∗ be the set of actions including a∗k. Condition
(b) states that there does not exist another action set a† such
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that the Q-value with respect to a† is larger than that to a∗.
Last, from condition (c), we know that there must be at most
one global optimal action that maximizes the Q-values of
all the UAVs. That is, no coordination between the UAVs
is required to achieve an optimal equilibrium.

� Cooperative Case: On the other hand, the UAV whose
Q-value update involves the shared Q-table is classified as
a cooperative case. By regarding UAVs as nodes, the inter-
action topology of information exchange between agents
can be described as a graph, with each edge representing
the interaction between two UAVs. Also, each edge is
assigned a nonnegative weight indicating the strength of
interaction. Let (i, j) denote the edge between node i and
node j. It has been proved in [44] that the convergence
of the cooperative MARL is guaranteed when the weight
of the edge (i, j), denoted by w(i, j), is chosen by the
Metropolis criterion [45], which is given by

w(i, j)= {1 + max[d(i), d(j)]}−1, ∀(i, j) ∈ H (37)

and

w(i, i) = 1−
∑

j∈N(i)

w(i, j), 1 ≤ i ≤ K ′ , (38)

where K ′ denotes the number of neighboring agents; H
represents the set of edges;N(i) = {1 ≤ j ≤ K ′ : (i, j) ∈
H} denotes the set of neighboring agents of the ith node;
d(i) = |N(i)| is the degree of the ith node of the graph.
Recall that, in our proposed CMARL, agents within the
same cooperative region can communicate with each other.
Hence, the proposed design is a particular case of the
Metropolis weights where the communication graph for
the agents within a cooperative region is always a fully
connected graph with d(i) = d(j) = K ′ − 1 in (37) and
(38).

2) Complexity Analysis: For the single Q-learning algorithm,
the computational complexity is O(TQ), where TQ denotes the
time required to converge to an optimal solution. Then, for the
conventional MARL algorithm, due to having K independent
UAVs, the computational complexity is O(KTQ). In our pro-
posed CMARL algorithm, additional complexity is required for
each UAV to handle the shared Q-table. Then, the complexity for
each UAV is O(TQ +KcTQ), where Kc denotes the number of
UAVs within a cooperative region. Clearly, Kc depends on the
actual environment and the total number of cooperative regions
NA. In the worst case, we have Kc = K and thereby the to-
tal computational complexity of CMARL is O((K2 +K)TQ).
However, although the complexity for one UAV is linearly
related to the UAV number in the network, it is worth noting
that the UAVs are usually too far away from a UAV to affect
its flight decision. According to our simulation results, which
will be presented later, the optimal network performance can
be achieved by selecting an appropriate cooperative region size
such that Kc ≈ 1. In this case, the complexity of the proposed
CMARL is O(KTQ), which is the same as the conventional
MARL algorithm.

Table II compares the execution time of different RL algo-
rithms using the Gauss-Markov mobility model and the real

TABLE II
COMPLEXITY AND EXECUTION TIME OF DIFFERENT RL ALGORITHMS

TABLE III
SIMULATION PARAMETERS

users’ mobility traces from [46]. The execution time is measured
by over 500 iterations. It is observed that the execution time of
the proposed CMARL is close to that of the conventional MARL,
which is consistent with our complexity analysis.

VI. SIMULATION RESULTS

In this section, the network performances of the proposed
CMARL based trajectory design algorithm are evaluated. We
use MATLAB to implement the proposed algorithm based on
the system model described in Section II. In our simulations, we
consider that the ground users are uniformly and independently
distributed within an area of size 1000 m × 1000 m. The UAVs
can dynamically move in the 3D space with adjustable altitude
ranging between 60 and 80 m. The maximum velocities of users
and UAVs are set to 1 and 20 m/s, respectively. The discount
factor is set as 0.8 due to the relatively fast convergence. We
adopt the time-decayed exploration rate ε = 1

Δ [47], where Δ
denotes the number of episodes. The default parameter values
for simulation are given in Table III.

We compare the proposed CMARL with another three
algorithms:
� K-means: In this case, the initial positions of UAVs are

determined by the K-means clustering algorithm and then
remain unchanged in the rest of the time slots.
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Fig. 3. An example of 3D deployment of multiple UAVs by using the K-means
clustering algorithm.

Fig. 4. Network throughput versus U2D SNR threshold.

� RL: After the initialization by the K-means clustering al-
gorithm, the UAV trajectory is determined by a centralized
controller executing the single Q-learning algorithm.

� MARL: The third one is that of using the conventional
MARL algorithm in which each UAV learns its optimal
policy in a distributed and independent manner.

Fig. 3 plots an example of the 3D deployment of four UAVs in
our simulations. The ground users are divided into four clusters,
each of which is associated with one UAV. We can observe that
some users are not served by any UAV due to the limited U2D
transmission range. Each UAV’s state can be represented by a
3D grid point as shown in the figure.

Fig. 4 compares the total network throughput for different
UAV trajectory design algorithms. In addition to the aforemen-
tioned algorithms, we also compare the performance of the pure
D2D scheme in which the contents can only be cached at D2D

Fig. 5. Network throughput versus number of UAVs.

users (without UAV caching). Hence, it is reasonable that the
U2D SNR threshold does not affect the throughput performance.
For the K-means algorithm, it is observed that there is almost
no performance gain when the U2D SNR threshold ηUAV is
high. The reason is that the static UAV placement using the
clustering scheme cannot make adaptations to the real-time
location-dependent channel conditions. On the other hand, we
can observe that the network throughput can be significantly
improved by adopting the RL-based UAV trajectory design
algorithms. Furthermore, we observe that different RL-based
algorithms achieve a similar performance when the U2D SNR
threshold is low. This is due to the fact that the maximum
throughput is limited by the available bandwidth of U2D links.
On the other hand, when the U2D SNR threshold is high, the
performance gain of the RL-based algorithms is not significant
since a large portion of users are served by a D2D transmitter
or the ground BS. Finally, our proposed CMARL significantly
outperforms all the compared algorithms, regardless of the
U2D SNR threshold, which demonstrates the benefits of our
proposed cooperative UAV trajectory design. For example, when
ηUAV = 0 dB, the network throughput can be increased by 66.4%
compared with the conventional MARL algorithm. As shown in
the green dashed line with downward triangles, the pure D2D
scheme is observed to achieve the same throughput performance
as CMARL when the cache storage capacity of each user is
increased to 380 files, which is 9.5 times larger than that of
CMARL.

Fig. 5 shows the network throughput performance with dif-
ferent numbers of UAVs. All of the cases can provide better
network performance as the number of UAVs increases except
the pure D2D scheme. It is observed that, when the number of
UAVs increases, the distributed schemes (MARL and CMARL)
can provide significant performance improvement, whereas the
performance improvement is not obvious when the centralized
schemes (RL and K-means) is applied. Also, as the UAV number
increases, the performance improvement of CMARL is higher
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Fig. 6. Network throughput versus number of iterations.

compared to that of MARL. This shows the effectiveness of the
proposed cooperative mechanism in exchanging UAVs’ reward
information. Clearly, the performance gains of using UAVs tend
to decrease with the increase of the UAV number. Since the
coverage of each UAV is limited, there exists a minimum number
of UAVs that can provide ubiquitous coverage to the ground
users such that the throughput performance is maximized. It
is observed that CMARL converges to a stable performance
when K = 10. Again, we see that our proposed CMARL can
provide the highest throughput among all compared algorithms,
regardless of the UAV number.

Fig. 6 shows the throughput performance obtained within a
given number of iterations. We can see that, as the number of
iterations increases, the throughput performance increases until
convergence. Furthermore, compared to the MARL algorithm,
the proposed CMARL algorithm presents a similar convergence
speed while achieving around 50% throughput improvement.
This result is consistent with our complexity analysis presented
in Section V. Finally, it can be seen that the learning rate of 0.9
used for all the RL-based algorithms outperforms that of 0.8 and
0.99. This can be explained by the fact that a large learning rate
(e.g., μ = 0.99) will hinder convergence while a small learning
rate (e.g., μ = 0.8) leads to slow convergence.

Fig. 7 shows the throughput ratio of each UAV with different
UAV numbers. The throughput ratio of each UAV is defined
as the throughput per UAV provided relative to the total net-
work throughput. From the figure shown, the throughput ratio
decreases as the UAV number increases. This is reasonable,
since the number of average connected users per UAV decreases
with an increased UAV number. Furthermore, we can see that
the throughput ratio of CMARL is larger than that of all other
algorithms, which confirms the effectiveness of the proposed
scheme for improving the U2D link utilization. We note that
although the throughput ratio of each UAV decreases when
the UAV number increases, the total network throughput can
be improved as shown in Fig. 5. Then, Fig. 8 demonstrates a
similar phenomenon for U2D SNR thresholds. For the same
reason, the throughput ratio decreases with the increase of U2D

Fig. 7. Throughput ratio of each UAV versus number of UAVs.

Fig. 8. Throughput ratio of each UAV versus U2D SNR threshold.

SNR threshold. Again, we observe that CMARL outperforms
all other algorithms in terms of throughput ratio. In particular,
when ηUAV = 0 dB, the throughput ratio can be increased by
36.1% compared with the conventional MARL algorithm.

We present the impact of cooperative region number NA on
the throughput performance of CMARL as shown in Fig. 9.
We can see that NA = 4 leads to the highest throughput when
the number of UAVs K is less than 10. However, CMARL
setting NA = 9 yields the best performance when K = 10.
This indicates that NA needs to be adjusted according to K
for achieving the optimal throughput performance. To further
demonstrate this, we plot the throughput performance of each
UAV with respect to different NA and K, as shown in Fig. 10.
The expected number of UAVs within a cooperative region can
be expressed by K̄c =

K
NA

. In the case of K̄c � 1, as shown
in the upper left corner of Fig. 10, it is difficult for a UAV to
find another UAV to cooperate with, since the total number of
cooperative regions is much larger than the UAV number. As
a consequence, the UAV will tend to update its own Q-table.
Essentially, this case can be regarded as the conventional MARL
in which all the agents independently learn their own policy. On
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Fig. 9. Network throughput using the proposed CMARL algorithm with
different numbers cooperative regions.

Fig. 10. Network throughput of each UAV using the proposed CMARL
algorithm in the case of different UAV numbers and cooperative region numbers.

the other hand, in the case of K̄c ≈ K, as shown in the lower
right corner of Fig. 10, UAVs are highly likely to cooperate
with each other, since the UAV number is much larger than the
total number of cooperative regions. Therefore, the UAVs will
tend to select actions according to the shared Q-table, which
can be regarded as the single Q-learning where a central Q-table
is used to achieve the global optimality. Remarkably, the best
performance is achieved when K̄c ≈ 1, i.e., NA ≈ K, which
is in line with the results shown in Fig. 9. This result actually
indicates that, by setting appropriate cooperative region number
NA, the proposed CMARL can achieve the optimal balance
between the distributed and centralized RL systems.

Fig. 11 shows the throughput performance of the proposed
CMARL with different cache-related parameters. We can see
that the throughput increases with the cache storage capacity
of UAV. This is because a larger UAV cache storage capacity
will result in a higher UAV cache hit probability. Furthermore,
the throughput performance increases as the popularity factor
κ increases, which is consistent with previous results reported
in [35]. The reason is that, when the content requests are more
concentrated, the U2D cache hit probability increases. Also,

Fig. 11. Network throughput using the proposed CMARL algorithm with
different cache storage capacities.

a linear relationship between the throughput performance and
the cache storage capacity can be observed when N = 1000.
However, when N = 500, a log-linear relationship between
the throughput performance and the cache storage capacity is
observed. In particular, as the cache storage capacity increases,
the throughput performance for different popularity factors κ
becomes closer and eventually converges to a constant when
N = 500. The reason is that when Mw = N , all the contents
can be stored on the UAVs, resulting in the maximum UAV
cache hit probability.

VII. CONCLUSION

In this paper, we have proposed a multi-UAV trajectory design
algorithm based on reinforcement learning (RL) for cache-
enabled UAVs to dynamically learn their optimal 3D positions
while maximizing the network throughput. A cooperative multi-
agent RL (CMARL) method has been developed to overcome the
inefficiency of independent RL in multi-agent systems. Using
the proposed CMARL trajectory design algorithm, each UAV
can autonomously decide whether or not the flight decisions
should be coordinated with other UAVs. Simulation results have
shown that the proposed trajectory design algorithm can improve
the network throughput and the UAV-to-Device (U2D) link
utilization compared to the conventional RL algorithms. Also,
our results have revealed that the proposed cooperative method
can achieve the optimal balance between the distributed and cen-
tralized RL systems with an appropriate number of cooperative
regions. These results can provide important design guidelines
for high-throughput aerial-terrestrial wireless networks.
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